Измерение длины волны излучения лазера интерференционным методом

Создание инверсной населённости энергетических уровней приводит к возможности генерации вынужденного излучения. При вынужденном переходе Е3 → Е1 возникают фотоны с энергией hn1, отвечающие видимому свету с длиной волны l1 = c/n1 = 632,8 нм (красный цвет), а при переходе Е2 → Е1 – фотоны с энергией hn2, отвечающие инфракрасному излучению с длиной волны l2 = c/n2 = 1153 нм (здесь с – скорость света).


Рис. 4. Упрощённая схема энергетических уровней гелий-неонового лазера. Вертикальные пунктирные стрелки соответствуют процессам возбуждения атомов при столкновении с ними электронов плазмы, горизонтальные – передаче возбуждения от атомов Не к атомам Nе, сплошные стрелки – процессам вынужденных переходов, волнистые стрелки – испусканию фотонов


Как видно из рис. 3, концы газоразрядной трубки 3 закрыты плоскопараллельными (кварцевыми) пластинками, установленными под определённым углом к продольной оси лазера. Этот угол выбран так, чтобы угол падения на пластинки света, распространяющегося вдоль оси лазера, был равен углу Брюстера. В этом случае свет, отражённый от пластинок, будет полностью поляризован перпендикулярно плоскости падения. Поэтому свет, прошедший через пластинки, будет поляризован преимущественно в плоскости падения. Многократное отражение света от зеркал 5 и 6 в ходе работы лазера приведёт к практически полной поляризации осевого излучения. Подобная конструкция лазера позволяет получать пучок не только когерентного, но и плоскополяризованного света, что расширяет возможности использования лазеров, когда необходим такой свет.

Если излучение, идущее вдоль оси гелий-неонового лазера, т.е. вынужденное излучение разложить в спектр, то в видимой части спектра будет присутствовать только одна красная линия, отвечающая указанной выше длине волны l1 = 632,8 нм. Излучение, направленное в стороны от оси газоразрядной трубки состоит, в основном, из спонтанного излучения (рис. 1б) и небольшой доли вынужденного с различными длинами волн, которое не удовлетворяет условиям резонанса в оптическом резонаторе лазера. Спектр спонтанного излучения содержит набор линий разного цвета, характерных для спектров испускания атомов гелия и неона.

В данной лабораторной работе исследуется излучение красного цвета гелий-неонового лазера, длину волны которого требуется определить. Она находится интерференционным методом, используя явления, возникающие при отражения света от плоскопараллельной прозрачной пластинки.

Интерференцией света называется наложение когерентных световых волн, приводящее к усилению или ослаблению света в различных точках светового поля в зависимости от разности хода накладывающихся волн. Интерференционная картина обычно имеет вид чередующихся светлых (максимумы освещённости) и темных (её минимумы) полос, колец или иных фигур.

Пусть на прозрачную плоскопараллельную пластинку толщины b падает монохроматическая световая волна длины l, которую можно представить как параллельный пучок лучей (рис. 5). AD – фронт волны, 1 и 2 – два параллельных луча из этого пучка. Свет частично отражается от верхней поверхности пластинки, а частично преломляется, проходит внутрь пластинки и отражается от её нижней поверхности.


Рис. 5. Интерференция света при отражении от плоскопараллельной прозрачной пластинки Пл толщины b: 1 и 2 – параллельно падающие лучи, С – точка наблюдения интерференционной картины


В точке С падающая на пластинку (луч 2) и отраженная от её нижней поверхности (луч 1) когерентные волны интерферируют. Их оптическая разность хода D равна


D = n (AB+BC) – DC – ,         (2)


где n – показатель преломления вещества пластинки относительно воздуха, l – длина волны света в вакууме (практически и в воздухе). Половина длины волны l/2 отнимается потому, что луч 2 в точке С отражается от среды оптически более плотной, чем воздух (n > 1). При этом фаза волны меняется на p, что равносильно «потере» половины длины волны. Если i – угол падения лучей 1 и 2, то геометрический расчёт с использованием законов отражения и преломления света позволяет привести выражение (2) к виду


.               (3)


Когда оптической разность хода D равна нечётному числу полуволн, интерферирующие волны находятся в противофазе и гасят друг друга, т.е., возникают минимумы интерференционной картины. Следовательно, минимумы будут наблюдаться, если


,                             (4)


где k = 1, 2, 3,… – целое положительное число, называемое порядком интерференции (в рассматриваемом случае k > 0, так как D > 0). Приравнивая между собой правые части выражений (3) и (4), получим условие минимумов при отражении света от пластинки в виде


.                    (5)


Схема лабораторной установки приведена на рис. 6. Лазерное излучение, выходящее из установленного на лазере микрообъектива, проходит через малое круглое отверстие в экране, попадает в виде расходящегося пучка света на стеклянную пластинку, расположенную на расстоянии l от экрана, и отражается от обеих её поверхностей. Отражённый от стеклянной пластинки свет даёт на экране интерференционную картину в виде чередующихся светлых и тёмных концентрических колец диаметром d, каждое из которых соответствует определённому углу падения i (рис. 6б). Поэтому их называют линиями равного наклона. Тёмные кольца соответствуют интерференционным минимумам; их положение определяется формулой (5). Выразим из формулы (5) число k:


.                     (6)


Из (6) следует, что порядок интерференции k при заданных l, b и n определяется углом падения i; чем меньше угол i и соответственно sini, тем больше k. Поскольку 1 ³ sin2 i ³ 0, то число k заключено в пределах


.                  (7)


Поэтому в данном случае может возникать лишь конечное число колец.


Рис. 6. Схема установки (а) и вид возникающей на экране интерференционной картины (б): 1 – лазер, 2 – микрообъектив, 3 – экран с малым отверстием, 4 – плоскопараллельная стеклянная пластинка, 5 – полосы равного наклона в виде концентрических колец с центром в точке О


Для колец не слишком большого диаметра, когда выполняется условие d << l, синус угла падения i, как следует из схемы на рис. 6, будет равен


.            (8)


Учитывая, что sini мал, упростим выражение (6):


,        (9)


поскольку x = sin2i/n2 << 1, а , если x << 1. Подставляя выражение (8) в (9), приближённо получим


,                 (10)


где dk – диаметр k‑го темного интерференционного кольца, соответствующего порядку интерференции k. Аналогично для любого другого (k + m) – го кольца диаметра dk+m, где m – также целое число, имеем


.          (11)


Из выражений (6) и (10) следует, что бóльшим порядкам интерференции k соответствуют кольца меньшего диаметра. Число k неизвестно. Его можно исключить, вычитая соотношение (10) из (11). В результате, после алгебраических преобразований получается формула для расчёта длины волны l излучения лазера:


.                      (12)


2. Порядок выполнения работы


1. Попросите лаборанта подключить блок питания лазера к сети. Под наблюдением лаборанта включите тумблер «Сеть» на блоке питания лазера. Нажмите и отпустите кнопку «Поджиг». При этом должен зажечься электрический разряд в газоразрядной трубке. Если разряд не зажигается, слегка поверните вправо ручку «Грубо» (при этом увеличивается напряжение на электродах) и вновь нажмите кнопку «Поджиг».

2. После появления разряда ручками «Грубо» и «Плавно» установите рабочий ток разряда 10–15 мА. В этом режиме начинается генерация лазерного излучения, и из торца прибора выходит луч красного цвета.

3. При помощи юстировочных винтов оптических рейтеров, на которых установлены экран и плоскопараллельная стеклянная пластинка, получите на экране отчётливую интерференционную картину в виде концентрических колец с максимумом интенсивности в центре.

4. Измерьте линейкой с точностью до 1 мм расстояние l от экрана до стеклянной пластинки, запишите его в табл. 1. В ту же таблицу внесите указанные на установке значения толщины пластинки b и показателя преломления n её материала (стекла).


Таблица 1

l, мм

b, мм

n

310

3,4

1,55


5. Измерьте с точностью до 0,5 мм диаметры тёмных интерференционных колец, соответствующих минимуму интенсивности света. В качестве кольца с порядком интерференции k + m возьмите 2, 3, 4 и 5‑е кольца от центра картины, а в качестве кольца с порядком интерференции k – соответственно 6, 7, 8 и 9‑е. Тогда m = 4. Результаты измерений диаметров колец запишите в табл. 2.

6. Направьте зрительную трубу спектроскопа на одно из боковых отверстие в корпусе лазера, в которых виден свет, исходящий из газоразрядной трубки в стороны от её оси. Этот свет представляет, в основном, спонтанное излучение. Посмотрите в спектроскоп и зарисуйте видимый спектр по возможности точнее.

7. Поместите спектроскоп за стеклянной пластинкой так, чтобы в его зрительную трубу попадал луч, испускаемый вдоль оси лазера. Этот луч представляет собой вынужденное излучение лазера. Посмотрите в спектроскоп и зарисуйте видимый спектр в этом случае.


Таблица 2

Опыт №

Кольцо

Кольцо

, мм2

, мм2

m

li, мм

dk, мм

dk+m, мм

1

6

22

2

10

484

100

4

0,000137

2

7

24

3

14

576

196

4

0,000136

3

8

28

4

18

784

324

4

0,000164

4

9

30

5

20

900

400

4

0,000178


3. Обработка опытных данных


1. Рассчитайте по формуле (12) длину волны li излучения лазера для каждого опыта, вычислив предварительно квадраты диаметров наблюдаемых интерференционных колец. Результаты расчётов запишите в табл. 2.

2. Найдите среднее арифметическое значение  измеренной длины волны по формуле


.                             (13)


Величину  в миллиметрах и нанометрах запишите в табл. 3.

3. Вычислите среднюю абсолютную  и относительную dl погрешности определения длины волны по формулам


, .                             (14)


Занесите величину dl в табл. 3.

4. Рассчитайте относительное расхождение dтабл между измеренным  и табличным λтабл = 632,8 нм значениями длины волны видимого излучения гелий-неонового лазера:


          (15)


Величину dтабл также внесите в табл. 3. Если в используемом методе определения l нет систематических погрешностей, а измерения и расчёты выполнены правильно, то относительное расхождение dтабл не должно превышать относительную погрешность dl.

5. Рассчитайте частоту n = c/l лазерного излучения и энергию фотона e = hn, где c – скорость света в вакууме и h – постоянная Планка, используя в качестве l полученное среднее значение длины волны . Результаты расчётов занесите в табл. 3.


Таблица 3

dl, %

dтабл, %

n, Гц

e

мм

нм

Дж

эВ

0,000154

154

11,37

75,71

46,08

3,05∙10-32

1,9∙10-13


6. Пользуясь цветными карандашами, аккуратно представьте по указанным ниже шаблонам спектры, которые наблюдались и были зарисованы Вами в ходе выполнения лабораторной работы.


Литература


1. Савельев И.В. Курс общей физики, т. 2. М.: Наука. 1982

2. Трофимова Т.И. Курс физики. М.: Высшая школа. 2004


Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать