Изучение двойного лучепреломления наведённое ультразвуком
p> ТК СЖК НЖК ИЖ


( ТК – твёрдый кристалл, ИЖ – изотропная жидкость )


При этом температуры переходов являются воспроизводимыми и легко обратимыми. В веществах, молекулы которого оптически активны, фазовые переходы осуществляются по схеме:

ТК СЖК ХЖК
ИЖ

§2Теории акустического двулучепреломления в жидкостях.

А. Теория Люка


Теория, выдвинутая Люка [1], основывается на теории Рамана и Кришнана для двулучепреломления в потоке. Для объяснения поведения молекул в потоке
Раман и Кришнан использовали гидродинамическую теорию Стокса, а также теорю
Ланжевена-Борна, связывающую поляризуемость ориентированных молекул с двулучепреломляющими свойствами среды.

В соответствии с работой Стокса, каждый элемент объёма жидкости, характеризуемый градиентом скорости G, подвержен действию сжимающего и растягивающего напряжений, вызванных силами, действующими вдоль двух взаимно перпендикулярных направлений. Соответственно длинные оси молекул ориентируются вдоль направления растяжения, а короткие вдоль направления сжатия. Каждая молекула стремится направить свою длинную ось под углом 450 к направлению скорости потока. Каждая из сил, вызывающих сжатие и растяжение элемента объёма среды равна


(G, где ( - коэффициент динамической вязкости. Ориентированная таким образом среда обнаруживает оптическую анизотропию, проявляющуюся в появлении двулучепреломления

где n – коэффициент преломления жидкости, М – постоянная Максвелла, являющаяся функцией размера и поляризуемости молекул.

Распространение ультразвуковых волн в жидкости сопровождается деформациями сжатия и растяжения, которые вызывают изменение формы каждого элемента объёма. Таким образом молекулы в поле переменной звуковой волны движутся с различными скоростями, так что существует градиент скорости, направленный вдоль направления распространения звуковой волны. Люка предположил, что этот градиент действует таким же образом, как и градиент скорости, вызывающий ориентацию молекул в потоке, т.е. (1) сохраняет силу.
При этом жидкость ведёт себя как одноосный кристалл, оптическая ось которого совпадает с направлением распространения звуковой волны. В местах растяжения молекулы ориентируются длинными осями вдоль продольной оси, ( жидкость уподобляется положительному кристаллу ), а в местах сжатия – в поперечном направлении ( жидкость уподобляется положительному кристаллу ).


Для вычисления значения градиента скорости Люка рассмотрел прохождение через среду плоской волны, распространяющейся в направлении OZ, тогда смещение частицы среды будет равно

Множитель характеризует поглощение волны, а , где

- скорость звуковой волны.


Соответственно для скорости частицы и градиента скорости движения имеем

Откуда

Где

Если - плотность среды, - интенсивность звука, а W – плотность энергии звуковой волны, то

Таким образом

Подставляя (6) в (1) получаем для акустического двулучепреломления

Проведя усреднение по времени в (7) находим

где , f – частота звуковой волны.


Согласно Раману и Кришнану

где N0 – число молекул в единице объёма, k – постоянная Больцмана, Т – абсолютная температура, а f(() – функция размера и поляризуемости молекул.

Таким образом

L – константа Люка.

Основные заключения из теории Люка следующие:


1. величина прямо пропорциональна и ;


2. величина пропорциональна квадратному корню из интенсивности звука;


3. величина тем выше, чем больше величина, характеризующая асимметрию молекулы и увеличивается с увеличением оптической анизотропии молекул и коэффициента преломления среды;


4. знак зависит отанизотропии поляризуемости молекул;


5. поскольку зависит от длины волны, то должна наблюдаться дисперсия двулучепреломления.

В. Теория Френкеля


В своей работе [6] Я. И. Френкель приписал появление акустического двулучепреломления анизотропии среды, вызванной ориентацией молекул или частиц этой среды. Механизм ориентации остаётся тем же самым, который был рассмотрен Люка. Однако, в отличие от Люка, Френкель принял во внимание тот факт, что ориентация молекул, вызванная прохождением через среду ультразвуковой волны, не исчезает мнгновенно с исчезновением волны, а следовательно и с исчезновением сил, вызывающих ориентацию. То есть ориентация молекул, а следовательно и анизотропия среды, устанавливается и исчезает не мнгновенно, а в течении какого-то времени, называемого временем релаксации.

В общем случае, если силы, вызывающие ориентацию, определяются тензором , а среднее распределение молекулярных осей в пространстве определяется тензором анизотропии , то

В жидкостях градиент скорости представляется тензором , который связан с соотношением

где - постоянная, а принимает значения, равные I при i = k и 0 при .

Для волны, распространяющейся вдоль направления OZ, для скорости частицы имеем

или в комплексном виде

Компоненты , , , тензора имеют вид

Следовательно

И

Поскольку из (12) имеем

откуда

Если , то . Выражение для двулучепреломления можно получить, если предположить,что из (1). Тогда

где - угол, на который колебания молекул отстают от колебаний звуковой волны, определяемый в виде

- постоянная, а значение G взято из (6) с учётом .
Уравнение (14) отличается от (7) наличием релаксационного параметра.

С. Теория Петерлина


Петерлин [7] предложил кинематическую теорию акустического двойного лучепреломления , в которой, также, как Люка и Френкель, предположил, что двулучепреломление возникает в результате ориентации молекул.

В своей теории Петерлин рассматривает молекулы как твёрдые анизотропные эллипсоиды вращения с длинами большой и малой осей соответственно 2а1 и 2а2. Оси эллипсоида совпадают с осями оптических поляризуемостей, значения которых соответственно равны и .
Если длина волны распространяющегося в среде звука намного больше, чем размеры молекул, то градиент G, определяемый уравнением (4), вызывает поворот молекулы с угловой скоростью , причём

или в отсутствии поглощения

В уравнении (16) - угол между большой осью эллипсоида и направлением
OZ, а

Таким образом, распределение осей эллипсоидов в пространстве в любой момент времени может быть выражено функцией распределения F. Принимая во внимание действие теплового движения молекул, вызывающего их дезориентацию, результирующее значение F можно записать в виде

где D – коэффициент вращательной диффузии.

Для D>>Gb решение (18) имеет вид

где N0 –число молекул в единице объёма.

Из (19) видно, что F и соответственно степень ориентации молекул увеличивается с увеличением частоты до тех пор, пока не достигает своего предельного значения, зависящего от .

Для величины двулучепреломления Петерлин получил следующее выражение

Из него видно, что величина двулучепреломления осциллирует с частотой акустической волны, но отстаёт от неё на угол и стрнемится к предельному значению с увеличением частоты волны.

Используя (5) можно записать

где

так что

Для чистых жидкостей

поэтому

Если предположить, что , то из (24) получим

Теория Петерлина, справедливая для описания поведения малых частиц в растворе, не может быть обобщена на случай, когда размеры частиц достаточно велики и становится заметным эффект ориентации из-за звукового давления, когда неприменимы гидродинамические уравнения Стокса.

В теориях предложенных Люка, Френкелем и Петерлином для жидкостей, состоящих из анизотропных по форме молекул, каждая молекула имеет форму эллипсоида вращения с главными осями, совпадающими с осями поляризуемрсти молекул. Основные выводы из этих теорий перестают быть справедливыми когда размеры частиц становятся сравнимыми с длиной звуковой волны. Примером таких сред могут служить коллоидные растворы.

Теория акустического двулучепреломления среды, содержащей частицы, форма которых отлична от сферической, впервые была предлжена Ока. В данной работе мы не будем останавливаться на рассмотрении теории Ока.

§3 Акустическое двулучепреломление для случая деформируемых молекул.

А. Теория Петерлина.

Петерлин [8] предположил, что наличие деформируемых молекул в растворе приводит к тому, что поведение раствора при прохождении через него ультразвуковой волны будет более близко к поведению чистой жидкости, чем к поведению коллоидального раствора. Поэтому оптическое поведение такой системы было рассмотрено таким же образом, как и в жидкости, путём нахождения выражения для связи анизотропии поляризуемости с двулучепреломлением.

Выражение для величины двулучепреломления имеет вид

где

С – концентрация молекул, Na – постоянная Авогадро, М – молярная масса молекул.

Соответственно

Если - величина двулучепреломления в потоке, вызванного градиентом скорости G для раствора, вязкость растворителя которого равна
,

то Петерлин вводит специфическую постоянную Максвелла, которая записывается в виде

так, что

С учётом того, что

Полученное выражение для величины акустического двулучепреломления для случая деформируемых молекул совпадает с тем, которое было получено
Петерлином для чистых жидкостей.

В. Теория Бадо

Бадо [9] модифицировал теорию Петерлина для акустического двулучепреломления в жидкостях и растворах макромолекул с учётом того, что внутреннее поле Ei , действующее на молекулу вследствие приложенного поля
Е, не определяется выражением Лоренца

- поляризуемость молекулы в направлении распространения звуковой волны,

где а – эффективный радиус молекулы, имеющей сферическую форму.

Использование этого выражения приводит к тому, что величины в
(21) и в (41) заменяются на

Модель, преломления Бадо, была использована для описания теории двулучепреломления в потоке.

Бадо предположил, что звуковая волна деформирует упругую сферическую молекулу так, что оси вращения получающегося эллипсоида совпадают с направлением распространения звуковой волны.

Тензор деформации при этом имеет вид

где

- коэффициент упругости, - вязкость растворителя.

Ориентации и деформации молекул противодействует эффект теплового движения молекул, который не только стремится дезориентировать молекулы по отношению к преимущественной ориентации, но и вызывают флуктуации формы молекул.

В итоге

где

в (50)


Это выражение для акустического двойного лучепреломления в растворе макромолекул во многих отношениях совпадает с выражением Петерлина.

§4 Анализ основных выводов теории двойного лучепреломления наведённого ультразвуком.

Основным выводом из всех вышеперечисленных теорий акустического двойного лучепреломления является зависимость величины двулучепреломления от квадратного корня из интенсивности ультразвуковой волны и частоты ультразвука для чистых жидкостей и растворов макромолекул и изменение величины двулучепреломления, пропорциональное интенсивности звука, для коллоидных растворов. Физическими механизмами, обуславливающими ориентацию молекул или частиц, взвешенных в жидкости, являются в первом случае наличие градиента скорости в поле звуковой волны в жидкости, характеризующейся коэффициентом динамической вязкости , а во втором случае ориентация частиц в растворе происходит благодаря эффекту давления излучения ультразвуковой волны.

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать