Изучение скорости горения высокоэнергетических смесевых твердых топлив


1.1.3 Смесевые топлива

Смесевые топлива представляют собой механические смеси твердых окислителей и горючих.

Окислителями обычно служат твердые соли хлорной и азотной кислот, богатые кислородом, в частности, перхлорат аммония NН4СIO4, перхлорат калия КСIО4, нитрат натрия NаNО3 и др.

Основное применение в качестве окислителя смесевого топлива получил перхлорат аммония. Его использование позволяет получить топлива с приемлемыми эксплуатационными и достаточно высокими энергетическими характеристиками. Перхлорат калия, несмотря на большое содержание активного кислорода, обеспечивает меньшее значение удельных импульсов из-за образования в продуктах сгорания твердого КСI.

Нитраты - натриевая, аммиачная и калиевая селитры – дешевые доступные продукты, но они менее эффективны, чем перхлораты, и гигроскопичны и поэтому так же, как и перхлорат калия, широкого практического применения не имеют.

Горючее в смесевых топливах выполняет также роль связки. В качестве горючих в этих топливах применяют вещества с достаточно высокой теплотворной способностью и могущие связывать отдельные компоненты топлива. Обычно для этих целей используются синтетические полимеры типа каучук, смол и пластмасс (например, полиуретаны, полибутадиены, полисульфиды).

Твердые смесевые топлива изготовляют путем введения измельченных частиц окислителя в расплавленное горючее – связку. Полученную таким образом массу либо используют для изготовления шашек, которые затем вставляются в камеру сгорания, либо заливают непосредственно в камеру сгорания, где она затвердевает и прочно соединяется со стенками. Топливный заряд должен быть при этом достаточно упругим, чтобы под действием термических напряжений, вызванных разными коэффициентами линейного расширения материалов топлива и камеры, в нем не образовались трещины. Применение зарядов, прочно связанных конструкцией, улучшает полезное использование объема камеры; кроме того, если горение заряда происходит от центра к периферии, исключается необходимость защиты стенок камеры сгорания теплоизоляционными материалами.

Для большинства комбинаций твердых горючих и окислителей в стехиометрической смеси на долю окислителя приходится 85-90% и более. Однако при значительном его содержании вследствие малой доли горючего – связки ухудшаются механические свойства зарядов. Поэтому обычно в смесевых топливах коэффициент избытка окислителя меньше единицы и ниже оптимального значения. С этой точки зрения более благоприятны комбинации, обладающие сравнительно меньшей величиной æ0.

Смесевые топлива без добавок обеспечивают удельные импульсы того же порядка, что и двухосновные; плотность смесевых топлив находится в пределах 1700-1800 кг/м3. Повышения удельного импульса можно добиться, если вводить определенное количество металлического горючего. В настоящее время применяются смесевые топлива, содержащие добавки алюминиевого порошка, что увеличивает теплотворную способность топлива. Правда, при этом в продуктах сгорания появляется многоатомная окись алюминия АI2О3, значительная часть которой конденсируется; тем не менее, имеет место выигрыш в удельном импульсе. Добавки алюминия до 5-15% повышают удельный импульс на 100-200 Н*с/кг. Разрабатываются и другие способы повышения удельного импульса твердых топлив, в частности, синтезированием горючих, в которых металлические элементы химически связаны с другими компонентами. Повышение удельного импульса возможно и применением более эффективных окислителей. Таким, в частности, является перхлорат лития LiCIO4. Повышение доли окислителя в твердых смесевых топливах до определенных пределов так же должно способствовать повышению удельного импульса.

Смесевые топлива имеют ряд преимуществ перед двухосновными. Они дешевле, технологичнее, позволяют создавать заряды, плотно прилегающие к оболочке; при наличии металлических добавок они обеспечивают больший удельный импульс; наконец, они позволяют путем изменения рецептуры получить более широкий диапазон изменения свойств топлива.

Иногда применяются твердые топлива смешанного типа, включающие в себя элементы как смесевых, так и двухосновных топлив. Для примера укажем на состав топлива двигателя одной из баллистических ракет; перхлорат аммония, нитроглицерин, нитроцеллюлоза, алюминиевый порошок.[1,стр.57-59]

Несмотря на многообразие существующих и разрабатываемых в иностранных лабораториях составов, смесевые топлива, как правило, содержат следующие вещества (по весу):

Окислители (перхлорат калия, нитрат аммония)………………..60-80%

Горюче-связующие вещества (каучуки, полиуретаны)…………25-15%

Алюминий (в виде порошка)………………………………………10-5%

Катализаторы и другие специальные вещества………………….до 5%.

Нитрат аммония (аммиачная селитра) NH4NO3- белый кристаллический порошок с удельным весом 1,7г/см3. Разлагается при нагревании выше 170°С. Очень гигроскопичен. Способен гореть и взрываться. При горении выделяется большое количество только газообразных продуктов.[2,стр.22,26]


1.1.4 Физические свойства

Плотность топлив является ответственной их характеристикой и всегда контролируется при производстве топлив.

Пониженная плотность топлив говорит о том, что в топливе имеются поры и пустоты, недопустимые для качественных зарядов топлив. Пониженная плотность сказывается и на скорости горения топлива: с уменьшением плотности она увеличивается и наоборот.

К теплофизическим характеристикам относятся удельная теплоемкость Сp, коэффициент теплопроводности λ и коэффициент температуропроводности α. Эти величины характеризуют способность топлив воспринимать тепло при воздействии температуры и проводить (распространять) его по толщине топлива. Они используются при теоретических расчетах термических напряжений зарядов, скрепленных с камерой двигателя, скоростей горения топлив в двигателях.

Изменение физических свойств топлив при хранении происходит под влиянием изменения внешней температуры, влаги и времени.[2,стр.42]

На поверхности ультрадисперсных частиц происходит радикальная перестройка расположения атомов и изменения типа межатомных связей по сравнению с поверхностью крупных частиц.[3].

В ультрадисперсных частицах реализуется особый тип дальнего порядка, при котором межатомные расстояния закономерно изменяются при переходе от центра частицы к ее поверхности, что приводит к образованию множества дефектов как на поверхности частицы, так и в ее объеме и увеличивает активность такой системы в целом.


1.1.5 Механизм горения

В механизме горения смесевых топлив имеется ряд особенностей, определяемых составом и природой входящих в них веществ.

Горение смесевых топлив начинается в твердой фазе с термического распада окислителей и горюче-связующих веществ. Завершается процесс горения в газовых фазах за счет интенсивных химических реакций между газообразными продуктами термического распада компонентов.

Для горения смесевых топлив наиболее характерны большие температуры поверхности горения (до 500-600ºС) и более близкие к поверхности горения максимальные температуры горения.

Процесс горения твердых ракетных топлив очень чувствителен к внешним воздействиям - давлению и начальной температуре топлива. При повышении давления и температуры резко сокращаются темная и смешанная зоны, и пламенная зона вплотную подходит к поверхности горения. Увеличивается подвод тепла к поверхности горения, скорость горения растет, а зона прогрева сужается. Чтобы избежать этих неблагоприятных условий, применяют катализаторы горения, ускоряющие химические реакции в твердой и газовой фазах, которые способствуют более полному горению и в конечном итоге улучшают характеристики топлив.[2,стр.58-59]

Введение АI в топливные системы, содержащие органическое горючее и неорганический окислитель, способствует повышению воспламеняемости, скорости горения и оказывает влияние на зависимость скорости горения от давления.


1.1.6 Скорость горения топлив

Для количественной оценки процесса горения топлив используют либо скорость перемещения фронта горения, либо массу топлива, сгорающего в единицу времени с единицы поверхности.

В первом случае скорость горения называют линейной и выражают в мм/сек или см/сек, во втором – массовой и выражают в г/см2*сек. В практике чаще пользуются линейной скоростью горения.

Скорость горения является очень важной рабочей характеристикой топлива, так как по ней судят о количестве газов, которые образуются при горении топлива в единицу времени с поверхности заряда. Она является одним из основных параметров при проектировании зарядов топлив.

Скорость горения топлива зависит от давления в двигателе, начальной температуры топлива, его плотности, энергетических характеристик, природы составных частей топлива, размера частиц окислителя (в смесевых топливах) и катализаторов горения.

Для практических целей всегда необходимо знать, прежде всего, зависимость скорости горения от давления.

Зависимость скорости горения твердых топлив от давления определяют опытным путем и выражают формулами, которые получили наименование законов скорости горения. Закон скорости горения находится опытным путем для каждого топлива в желаемом диапазоне давлений.[2,с 59-60]


1.1.7 Элементарный состав

Условная химическая формула.

Состав вещества в массовых долях отдельных элементов называется элементарным составом. Общая формула для массовой доли отдельного(k-го) элемента в веществе имеет вид:


bk= ;


здесь bk – массовая доля k-го элемента;

ak - число атомов данного элемента в молекуле рассматриваемого соединения;

Ak- атомная масса этого элемента;

Если ограничиться пока элементами H, C, N и О, то в общем случае химическая формула вещества имеет вид

CmHnOpNq.

Тогда элементарный состав будет


bc=;     bh=; bo=;   bn=.


Здесь µ=12m+n+16p+14q – молекулярная масса вещества;

bc, bh, bo, bn – доли углерода, водорода, кислорода и азота.

Для углерода и водорода приняты округленные значения атомных масс (µн=1, µс=12);

Если топливо или его компонент представляет собой комбинацию нескольких веществ, то массовая доля отдельного элемента найдется так:


bk=Σgibki


где bk – массовая доля k – го элемента в смеси,

gi - массовая доля отдельного (i–го) вещества в смеси,

bki – массовая доля k – го элемента в i- м веществе;

Если топливо состоит из окислителя и горючего и известно соотношение компонентов æ элементарный состав обоих компонентов, то массовая доля отдельного (k – го) элемента в топливе найдется так:


bk=(bkг+ ækok)/(1+ æ).


Когда компоненты представляют собой смеси индивидуальных веществ, то для некоторых расчетов удобно использовать условную химическую формулу данного компонента. Такую формулу можно построить разным способом. Например, удобно определять ее, исходя из числа атомов различных элементов, приходящихся на 100 массовых единиц рассматриваемого компонента. Тогда условная химическая формула будет иметь вид

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать