Отсюда следует, что комбинацией собирающих и рассеивающих линз можно ликвидировать этот вид аберрации.
S1 S2
Рис. 5, б.
б) Астигматизм наклонных пучков. Даже узкие пучки лучей, но исходящие из точек, удаленных от оптической оси, не собираются в точку – наблюдается астигматизм наклонных пучков (рис.6).
ls
lm
L
Рис. 6
До преломления лучи исходят из точки L радиально, а волновые поверхности строго сферические. За линзой волновые поверхности деформируются (разные лучи пучка идут в линзе не симметрично), становятся поверхностями двоякой кривизны. Такая поверхность будет сходиться с различной скоростью во взаимно перпендикулярных направлениях и нигде за линзой не сойдется в точку. На некотором расстоянии от линзы она сойдется в узкую горизонтальную полоску lm, а далее в вертикальную полоску ls. Вообще же узкий наклонный пучок изобразится кружком рассеяния. Количественно аберрация астигматизма характеризуется астигматической разностью d, т.е. расстоянием между изображениями lm и ls.
в) Дисторсия. Это искажение изображения вызвано неодинаковостью поперечного увеличения в пределах поля зрения, оно приводит к искривлению линий в плоскости изображения (рис. 7)
а б в
Рис. 7
Так, например, квадрат "а" изобразится в виде «подушки» "б", если поперечное увеличение растет с увеличением расстояния от оси системы, и в виде «бочки» "в", если увеличение уменьшается с удалением от оси.
г) Хроматическая аберрация является следствием дисперсии вещества линзы. Собирающие свойства линзы, т.е. ее фокусное расстояние, зависят от показателя преломления N по известному закону (4)
.
Стекла обладают заметной дисперсией n = n(l) и обычно показатель преломления фиолетовых лучей значительно больше показателя для красных лучей. Поэтому фиолетовые лучи, даже в линзе с исправленной сферической аберрацией, соберутся за линзой ближе, чем красные (рис.8)
Fф Fк
Рис. 8
Изображение светящейся точки, испускающей белый свет, будет в виде окрашенного кружка рассеяния. Мерой хроматической аберрации является величина .
Экспериментальная часть
Приборы и принадлежности: оптическая скамья, линзы, экран, диафрагма, зеркало, предмет (стекло с сеткой), электрические лампочки на 220 В и на 6 В.
Задание 1. Определение фокусного расстояния собирающей линзы.
Фокусное расстояние собирающей линзы, f > 0, можно определить непосредственно из формулы
если известны расстояния а1 и а2. Тогда
(6)
Если к тому же неизвестны размеры предмета Y и его изображения Y¢, то из (5) и (6) получим
(7)
а) На оптической скамье собрать схему (слева на право): осветитель (лампа на 220В), предмет, линза, экран с миллиметровой бумагой.
б) Получив на экране изображение предмета, найти величины а1, а2, Y, Y¢ и записать в таблицу 1.
в) Рассчитать значение f.
Таблица 1
№ опыта |
а1 |
а2 |
Y |
Y¢ |
||
|
|
|
|
|
|
|
г) Повторить измерения для уменьшенного изображения.
д) Оценить погрешность измерений.
Задание 2. Определение фокусного расстояния вогнутого сферического зеркала
а) Так как формула зеркала и формула линзы тождественны, то можно определить фокусное расстояние вогнутого зеркала аналогично предыдущему способу.
Задание 3. Изучение основных погрешностей формирования изображений линз
Приборы и принадлежности: оптическая скамья, источники света (лампочки накаливания на 8 В), исследуемая (плосковыпуклая) и колиматорная линзы, набор кольцевых диафрагм с диаметрами D1 = 22мм, D2 = 70мм, D3 = 85мм, экран, предметы в виде сеток и креста, светофильтры.
а) Сферическая аберрация.
1. На оптической скамье собрать установку, состоящую из источника света (лампочка 8В), предмета (сетка), диафрагмы, исследуемой линза и экрана.
2. Поместить в держатель первую диафрагму с D1 = 22мм и добиться резкого изображения предмета на экране. Отметить расстояние а1 от предмета до линзы и от линзы до экрана а2. Данные записать в таблицу 2.
Таблица 2
Диаметр диафрагмы |
а1 |
а2 |
|
|
|
|
|
3. Не меняя расстояние а1 повторить измерения с диафрагмами больших диаметров.
4. Найти величину продольной сферической аберрации для данного расстояния предмета до линзы (i = 2, 3, 4, … - означает номер диафрагмы).
5. Построить график зависимости d от диаметров кольцевых зон, d(D).
б) Хроматическая аберрация
1. Собрать установку, состоящую из источника света (лампочка 8В), светофильтров, круглых диафрагм, исследуемой плосковыпуклой линзы, обращенной к диафрагме плоской стороной, экрана.
2. Получить на экране резкое изображение нити лампочки при самом малом отверстии диафрагмы.
3. Отметить положение экрана а2 на оптической скамье.
4. Повторить измерения пунктов 2 и 3 для разных светофильтров на держателе б. Данные занести в таблицу 3.
Таблица 3
Светофильтр |
Положение экрана, а2 |
d |
Красный Зеленый Голубой Фиолетовый |
|
|
5. Проанализировать результаты эксперимента, сделать вывод
в) Астигматизм.
1. Собрать установку, состоящую из источника света (лампочка 8В), коллиматорной линзы (F = 12 см), предмета в виде креста, исследуемой линзы и экрана.
2. Получить на экране резкое изображение креста.
3. Повернуть линзу вокруг вертикальной оси на угол 300 - 450. Перемещая экран, добиться резкого изображения сначала горизонтальной, а затем вертикальной линии креста. Отметить оба положения экрана а2 (гор.) и а2 (верт.).
4. Найти астигматическую разность
d = а2(гор.) – а2(верт.).
г) Дисторсия
1. На оптической скамье последовательно расположить: источник света (лампочка 8В), предмет в виде мелкой сетки, исследуемую линзу (повернуть к предмету плоской стороной) и экран.
2. Передвижением линзы и экрана получить четкое подушкообразное изображение сетки. ЗАРИСОВАТЬ.
3. Взять в качестве предмета ту же сетку.
4. Поменять местами предмет и линзу.
5. Передвижением линзы и экрана получить четкое бочкообразное изображение предмета. ЗАРИСОВАТЬ.
Список рекомендуемой литературы
1. Ландсберг Г.С. Оптика. М.: Наука. 1976.
2. Физический практикум. Электричество и оптика /под ред. В.И. Ивероновой. М.: Наука. 1968.
3. Сорокина А.А., Ледяева Г.А., Шевелкина Л.Д. Практикум по оптике и физике атома. Иваново.1974.
Страницы: 1, 2