Колебательное движение атомов внутри молекулы практически всегда квантуется и состояние молекулы как квантовой системы должно определяться квантовыми параметрами. В обычных условиях (при не слишком высоких температурах) молекула газа находятся в невозбужденном состоянии, отвечающем основному (нулевому) колебательному уровню. Поэтому квантовыми эффектами в реальных газах при обычных условиях можно пренебречь. Следовательно, функция распределения классического идеального газа в неравновесном состоянии зависит не только от времени, но и от координат частиц .
Обозначим символом Г совокупность всех переменных, от которых зависит функция распределения, за исключением координат молекулы и времени. В элементе фазового объёма выделим элементарный объём трёхмерного пространства , а остальную его часть обозначим символом dГ. Величины dГ есть интегралы движения, которые остаются постоянными для любой молекулы в течение её свободного движения между двумя последовательными столкновениями. Свободное движение молекулы осуществляется без внешнего воздействия со стороны каких-либо внешних тел или полей. В результате взаимодействия молекул друг с другом (в случае столкновении) или под воздействием поля
эти величины вполне могут измениться. Координаты молекулы, как целого, меняются в течение её свободного движения.
Концентрация или плотность пространственного распределения частиц газа может быть выражена интегралом , а среднее число частиц в элементе объёма определяется произведением . Под элементом объёма подразумевается физически малый объём , т.е. участок пространства, размеры которого малы по сравнению с размерами, рассматриваемыми в задаче. В то же время размеры малого объёма велики по сравнению с размерами молекул. Утверждение о нахождении молекулы в данном элементе объёма определяет положение молекулы в лучшем случае лишь с точностью до расстояний, превышающих размеры самой молекулы. Точное определение координат двух классических частиц даёт возможность точного определения их траекторий до и после столкновения, если оно имело место. Неопределенность же точного взаимного положения частиц даёт возможность применять вероятностный подход к решению задачи об их столкновении. Рассмотрение классического газа подразумевает то, что плотность
является макроскопической величиной. Макроскопичность имеет место лишь в том случае, когда элементарный объём содержит достаточно большое число частиц ( только тогда изменение числа частиц в элементарном объёме мало в течение рассматриваемого процесса); при этом линейные размеры области, занимаемой газом, должны быть значительно больше среднего межмолекулярного расстояния.
§2 Столкновение частиц.
Рассмотрим столкновение молекул, одни из которых обладают значениями величин Г, лежащими в заданном интервале , а другие – в интервале . В результате столкновения молекулы приобретают значения величин Г в интервалах соответственно и . Далее для краткости будем говорить о столкновении молекул и с переходом
Произведение числа молекул в единице объёма на вероятность каждой молекулы испытать столкновение с указанным переходом даст полное число таких столкновений, отнесённое к единице объёма в единицу времени. Вероятность такого события (обозначим её через некоторую функцию ) пропорциональна числу молекул в единице объёма и интервалам значений величин каждой из молекул после столкновения. Таким образом, будем считать, что , а число столкновений с переходом , происходящих в единице объёма в единицу времени примет вид
( штрихом обозначены конечные состояния, без штриха - начальные). Вероятность столкновения обладает важным свойством, которое следует из законов механики, относительно обращения знака времени. Если обозначить верхним индексом Т значения всех величин, получившихся при обращении знака времени, то будет иметь место равенство
Обращение времени переставляет состояния “до” и ”после”, а значит необходимо переставить местами аргументы функции вероятности. В частности, указанное равенство справедливо в случае равновесия системы, т.е. можно утверждать, что в равновесии число столкновений с переходом равно числу столкновений с переходом (*). Обозначим через равновесную функцию распределения и запишем
(1)
Произведение дифференциалов представляет собой элемент фазового пространства, который не изменяется при обращении времени (дифференциалы в обеих сторонах равенства можно опустить) . Не изменяется так же потенциальная энергия молекул , и, следовательно, равновесная (больцмановская) функция распределения, которая зависит только от енергии :
(2)
V – макроскопическая скорость движения газа как целого. В силу закона сохранения энергии при столкновении двух молекул . Поэтому можно записать (3)
Отметим ещё тот факт, что сама функция вероятности в принципе может быть определена лишь путём решения механической задачи о столкновении частиц. Написанное выше равенства (1) , (2) и (3) дадут после сокращений в (1)
С учётом утверждения (*)
Интегрируя последнее равенство (для использования в дальнейшем) получаем соотношение:
(4)
§3 Вывод кинетического уравнения.
Рассмотрим производную от функции распределения по времени:
При движении молекул газа в отсутствии внешнего поля величины Г, как интегралы движения, не изменяются.
(5)
(последнее слагаемое в выражении производной обнуляется , т.к. )
( оператор набла)
Выражение для производной примет вид : (6)
Пусть теперь газ находится во внешнем потенциальном поле , действующем на координаты центра тяжести молекул (например, в гравитационном поле). И пусть F – сила, действующая со стороны поля на частицу.
(7)
Правую часть равенства (6) обозначим через . Символ означает
скорость изменения функции распределения благодаря столкновениям, а величина
есть отнесённое к единице времени изменение за счёт столкновений числа молекул в фазовом объёме . Полное изменение функции распределения в заданной точке фазового пространства запишется в виде :
(8)
Величина называется интегралом столкновений, а уравнение вида (8) – кинетическим уравнением. Реальный смысл кинетическое уравнение (8) примет только после определения вида интеграла столкновений.
§3 Определение вида интеграла столкновений и уравнения Больцмана.
Во время столкновения молекул происходит изменение величин, от которых зависит функция распределения. Учитывая тот факт, что время наблюдения состояния системы и координаты частиц изменяются, не зависимо от того, произошло или нет столкновение частиц (которое влияет лишь на характер изменения координат),можно утверждать,что изменяются величины Г столкнувшихся молекул. Рассматривая достаточно малый интервал, обнаружим, что молекулы при столкновении выводятся из этого интервала, т.е. имеют место акты “ухода”. Пусть двум столкнувшимся молекулам соответствуют, как и ранее, величины и до столкновения ,а , после столкновения (для краткости говорим о переходе ).
Полное число столкновений при вышеуказанном переходе со всеми возможными значениями
при заданном , происходящих в единицу времени в объёме ,определяется интегралом
В то же время происходят столкновения иного рода (называемые “приходом”), в результате которых молекулы, обладавшие до столкновения значениями величин , лежащими вне заданного интервала , попадают в этот интервал. Такие переходы могут быть обозначены следующим образом: (со всеми возможными значениями при заданном ). Аналогично первому типу перехода полное число таких столкновений в единицу времени в объёме равно: