Рисунок 30 – Схема устройства, реализующего предлагаемый способ компенсации реактивной нагрузки
Изменения реактивной нагрузки электрической сети регистрируются датчиком 12 реактивного тока, содержащим два выхода 13 и 14, на одном (13) из которых формируется быстродействующий сигнал изменения реактивной нагрузки сети в переходной период, а на другой (14) – задержанный сигнал изменения реактивной нагрузки сети в установившихся режимах. Сигналы, пропорциональные изменениям реактивной нагрузки электрической сети, направляются в блок 15 управления, снабженный выходами 16–18, через которые эти сигналы передаются в блок 19 фазового регулирования напряжения дросселя и блок 20 формирования импульсов управления тиристорами быстродействующих коммутаторов 7, включающих ступени конденсаторной батареи.
Величина нагрузки источника питания контролируется датчиком 21 тока. В зависимости от соотношения мощностей дросселя и реактивных нагрузок последние разделяются на две группы. Первую группу образуют реактивные нагрузки 10.1, пусковые мощности которых меньше мощности дросселя. Вторая группа формируется из реактивных нагрузок 10.2 с пусковыми мощностями, превышающими мощность дросселя.
Способ компенсации статической и резкопеременной реактивной нагрузки заключается в том, что изменяют напряжение дросселя путем фазового регулирования его быстродействующего тиристорного коммутатора и переключают ступени конденсаторной батареи.
С целью повышения качества напряжения электрической сети предварительно подключают дроссель и наибольшую ступень конденсаторной батареи, равную по величине мощности дросселя, на номинальное напряжение электрической сети. Затем уменьшают напряжение дросселя в момент включения реактивной нагрузки электрической сети на величину приращения этой нагрузки, восстанавливают номинальное напряжение дросселя по окончании переходного процесса в реактивной нагрузке электрической сети и формируют сигнал приращения реактивной нагрузки электрической сети в установившемся режиме, подключая этим сигналом резервные ступени конденсаторной батареи.
При увеличении тока нагрузки источника питания выше установленного значения, вызванном переводом части подключенных ступеней конденсаторной батареи в резерв, формируют сигнал перегрузки источника питания, блокируют этим сигналом включение реактивной нагрузки электрической сети и резервных ступеней конденсаторной батареи и одновременно вводят в работу резервный источник питания[32,33].
Следующее устройство может быть использовано в системе автоматического регулирования статического компенсатора, предназначенного для компенсации реактивной мощности мощных несимметричных, быстроизменяющихся нагрузок промышленных предприятий.
В регулятор статического компенсатора, состоящего из конденсаторной батареи и реактора, управляемого тиристорами, содержащий датчики тока нагрузки, датчики напряжения питающей сети, сумматоры, через функциональные преобразователи, подключенные к току управления тиристорами, введены датчики тока конденсаторной батареи, шесть датчиков мгновенного активного тока и три датчика мгновенного реактивного тока.
На рисунке 31 показана функциональная схема регулятора
Рисунок 31 – Функциональная схема регулятора статического компенсатора
Регулятор содержит шесть датчиков 1 мгновенного активного тока, которые подключены к соответствующим выходам датчиков тока 2 нагрузки 3 и напряжения 4 питающей сети 5, три датчика 6 мгновенного реактивного тока, на входы которых включены выходы датчиков 7 тока конденсаторных батарей 8. Выходы датчиков мгновенного активного тока и мгновенного реактивного тока подключаются соответствующим образом к входам трех сумматоров 9, выходы которых включены на входы трех функциональных преобразователей 10. С выходов функциональных преобразователей сигналы подаются на вход блока 11 управления тиристорами тиристорного блока 12, который управляет током реактора 13[34].
Разработано устройство для регулирования реактивной мощности, которое может быть использовано при построении систем электроснабжения для поддержания заданного баланса реактивной мощности.
На рисунке 33 показана схема разработанного устройства.
Рисунок 33 – Схема устройства для регулирования реактивной мощности
Устройство для регулирования реактивной мощности в системе электроснабжения содержит n секций 1 конденсаторной батареи, подключаемых к шинам посредством блоков 2 коммутации, и вентильно-реакторное компенсирующее устройство 3.
В состав устройства входит также включенный в цепь вентильно-реакторного компенсирующего устройства датчик 4 тока, состоящий из трехфазной группы трансформаторов 5 тока и выпрямителя 6, два компаратора (7 и 8) и два источника опорного напряжения (9, 10). Устройство содержит также цифровую пересчетную схему, в состав которой входят шесть логических элементов 2И 11–16, два логических элемента НЕ 17 и 18, логический элемент ИЛИ 19, два счетчика на К 20 и 21 (где К – число коммутаций вентилей вентильно-реакторного компенсирующего устройства за период напряжения системы электропитания), RS-триггер 22, синхронизатор 23, элемент 24 задержки и n-разрядный реверсивный регистр 25 сдвига.
Цепь управления вентильно-реакторным компенсирующим устройством 3 образует контур, содержащий датчик 26 обратной связи, схему 27 сравнения, блок 28 управления вентильно-реакторным компенсирующим устройством 3 и датчик 29 тока нагрузки.
Устройство работает следующим образом.
Поддержание заданного баланса реактивной мощности в системе электроснабжения осуществляется путем плавного изменения реактивной мощности вентильно-реакторного компенсирующего устройства в функции отклонения величины угла j сдвига фаз между напряжениями системы и током нагрузки и ступенчатого изменения реактивной мощности за счет подключения (отключения) определенного количества секций 1, peгулируемого при помощи блоков 2 коммутации батареи конденсаторов. Сигнал, пропорциональный углу j сдвига фаз, вырабатывается датчиком 26 обратной связи, этот сигнал на схеме 27 сравнения сравнивается с опорным сигналом U0 и разница подается на информационный вход блока 28 управления вентильно-реакторным компенсирующим устройством. Последний осуществляет сдвиг последовательности вырабатываемых им импульсов управления вентилями компенсатора 3 на временной интервал, пропорциональный величине отклонения угла j от заданного значения. Следствием этого является изменение величины потребляемого компенсатором 3 реактивного тока (и, соответственно, величины реактивной энергии), что в конечном итоге приводит к компенсации возмущающего воздействия нагрузки на величину стабилизируемого параметра.
При глубоком изменении нагрузки компенсация возмущающего воздействия осуществляется путем переключения секций конденсаторной батареи. Переключение секций 1 производится на основании информации о величине реактивной мощности компенсирующего устройства 3 посредством контроля за величиной тока последнего.
Подключение очередной секции 1 происходит сразу после того, как на одном из интервалов работы компенсатора 3 амплитуда тока последнего станет меньше заданного значения. Следующее подключение будет происходить при тех же условиях, но по истечении времени, равного периоду напряжения системы и необходимого для затухания переходного процесса подключения секций 1 регулируемой части конденсаторной батареи.
Отключение очередной секции 1 конденсаторной батареи будет происходить после того, как на всех шести (если схема компенсатора 3 трехфазная мостовая) интервалах работы амплитуда тока вентильно-реакторного компенсирующего устройства 3 превысит наперед заданное значение.
Выделение сигнала, пропорционального току компенсирующего устройства 3, производит датчик 4 тока, содержащий трехфазную группу трансформаторов 5 тока и выпрямитель 6. Этот сигнал поступает на инвертирующий вход первого компаратора 7, на неинвертирующий вход которого поступает опорное напряжение источника 9, величина которого определяет минимально допустимую амплитуду тока компенсирующего устройства 3. На выходе компаратора 7 будет присутствовать сигнал, равный уровню логической единицы, когда напряжение источника 9 превышает напряжение датчика 4, и равный уровню логического нуля в обратном случае. Этот сигнал поступает на один из входов первого элемента 2И 11, на другой вход которого с выхода синхронизатора 23 поступают импульсы, сформированные в момент перехода напряжения системы через нуль. Этот момент будет совмещен с амплитудой тока вентильно-реакторного компенсирующего устройства 3.
Если амплитуда тока компенсирующего устройства 3 в каждый интервал времени превышает эталонный уровень, на выходе первого элемента 2И 11 постоянно присутствует нулевой уровень. Стоит хотя бы на одном интервале току компенсатора 3 упасть ниже эталонного значения, как ввиду присутствия на выходе компаратора 7 в синхронизирующий момент единичного уровня на выходе элемента 2И 11 появится импульс, который поступает на один из входов шестого элемента 2И 16. На другой вход элемента 16 с выхода первого счетчика 20 поступает сигнал логического нуля, если в течение предыдущего периода уже происходила процедура подключения секции 1, и сигнал логической единицы, если указанная процедура места не имела.
Слежение за числом истекших интервалов после подключения очередной секции 1 осуществляется счетчиком на К (для трехфазной мостовой схемы К = 6), который после сброса в нулевое состояние шестым по счету прошедшим импульсом с выхода синхронизатора на вход С1 устанавливает на выходе Q4 уровень логической единицы. Таким образом, поступивший на один из входов элемента 2И 16 импульс при наличии на втором входе уровня логической единицы появляется на S-входе RS-триггера. На выходе последнего устанавливается уровень логической единицы, который подается на первый управляющий So и первый записывающий DR входы регистра 25 сдвига.
После прихода задержанного на элементе 24 импульса на синхронизирующий С-вход регистра 25 реализуется процедура записи логической единицы в младший разряд регистра 25 и сдвиг выходной последовательности влево. Элемент 24 задержки обеспечивает сдвиг синхронизирующего момента записи на время, необходимое для установления требуемых уровней на управляющих S0, S1, и записывающих DR, DL входах регистра 25.
Запись очередной единицы в регистр приводит к срабатыванию соответствующего блока 2 коммутации и подключению очередной секции 1 к шинам системы. Появившийся на выходе Q триггера уровень логической единицы поступает также на один из входов четвертого логического элемента 2И 14, на другой вход которого поступает задержанный на элементе 24 импульс синхронизации. Появившийся на элементе 14 импульс подается на входы сброса R первого счетчика 20 и триггера 22, устанавливая на выходных выводах последних нулевые уровни прежде, чем появится следующий импульс синхронизации. Тем самым исключается последовательное подключение нескольких секций 1 конденсаторной батареи к выходным шинам системы.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22