Кристали та аморфні тіла

Кристали та аморфні тіла












РЕФЕРАТ З ФІЗИКИ ТВЕРДИХ ТІЛ



Довгий час здавалося, що найцікавіше у фізиці - це дослідження мікросвіту і мікрокосмосу. Саме там намагалися знайти відповіді на найважливі, фундаментальні питання, що пояснюють устрій навколишнього світу. А зараз утворився третій фронт досліджень - вивчення твердих тіл.

Чому ж так важливо досліджувати тверді тіла?

Величезну роль, звичайно, грає десь практична діяльність людини. Тверді тіла - це метали і діелектрики, без яких немислима електротехніка, це - напівпровідники, що лежать в основі сучасної електроніки, магніти, понад провідники, конструкційні матеріали. Словом, можна стверджувати, що науково-технічний прогрес значною мірою заснований на використанні твердих тіл.

Але не тільки практична сторона справи важлива при їх вивченні. Сама внутрішня логіка розвитку науки - фізики твердого тіла - привела до розуміння важливого значення колективних властивостей великих систем.

Тверде тіло складається з мільярда частинок, які взаємодіють між собою. Це обумовлює появу певного порядку в системі і особливих властивостях всієї кількості мікрочасток. Так, колективні властивості электронов визначають електропровідність твердий тіл, а здатність тіла поглинати тепло - теплоємність - залежить від характеру колективних колебаний атомів при тепловому русі. Колективні властивості пояснюють всі основні закономірності поведінки твердих тіл.

Структура твердих тіл багатообразна. Проте з можна розділити на два великі класи: кристали і аморфні тіла.

Кристали - це тверді тіла, атоми або молекули яких займають певні, впорядковані положення в просторі. Тому кристали мають плоскі грані. Наприклад крупинка звичайної куховарської солі має плоскі грані, складові один з одним прямі кути (мал. 1). Це можна відмітити, розглядаючи сіль за допомогою лупи. Строга періодичність в розташуванні атомів приводить до збереження порядку на великих відстанях (у такому разі говорять, що є дальній порядок). А як геометрично правильна форма сніжинки! У ній також відбита геометрична правильність внутрішньої будови кристалічного твердого тіла - льоду.

Проте, правильна зовнішня форма не єдиний і не навіть найголовніший наслідок впорядкованої будови кристала. Головне - це залежність фізичних властивостей від вибраного в кристалі напряму. Перш за все впадає в очі різна механічна міцність кристалів по різних напрямах. Наприклад шматок слюди легко розшаровується в одному з напрямів на тонкі пластинки, але розірвати його в напрямі, перпендикулярному пластинкам, набагато важче. Так само легко розшаровується в одному напрямі кристал графіту. Коли ви пишете олівцем, таке розшарування відбувається безперервно і тонкі шари графіту залишаються на папері. Це відбувається тому що кристалічна решітка графіту має шарувату структуру. Шари утворені поряд паралельних сіток, що складаються з атомів вуглецю. Атоми располагаются у вершинах правильных шестикутників. Відстань між шарами порівняно велика - зразкове в два рази більше, ніж довжина сторони шестикутника, тому зв'язки між шарами менш міцні, чим зв'язки усередині них. Багато кристалів по-різному проводять теплоту і електричний струм в різних напрямах. Від напряму залежать і оптичні властивості кристалів. Так, кристал кварцу по разному заломлює світло залежно від напряму падаючих на нього променів.

Залежність фізичних властивостей від напряму усередині кристала називають анізотропією. Всі кристалічні тіла анізотропні.

Кристалічну структуру мають метали. Саме метали преимущественно використовуються в даний час для виготовлення знарядь праці, різних машин і механізмів.

Якщо узяти порівняно великий шматок металу, то на перший погляд його кристаллическая структура ніяк не виявляється ні в зовнішньому вигляді шматка ні в його фізичних властивостях. Метали в звичайному стані не виявляють анізотропії.

Справа тут в тому, що метал зазвичай складається з величезної кількості зрощених один з одним кристалликов. Під мікроскопом або навіть за допомогою лупи їх неважко розглянути, особливо на свіжому зламі металу. Властивості кожного кристала залежать від напряму, але кристали орієнтовані по відношенню один до одного безладно. В результаті в об'ємі, що значно перевищує об'єм окремих кристалів всі напрями усередині металів рівноправні і властивості металів однакові по всіх напрямах.

Тверде тіло, що складається з великої кількості маленьких кристалів, називають монокристалами.

Дотримуючи великі обережності, можна виростити металевий кристал великих розмірів - монокристал. У звичайних умовах полікристалічне тіло утворюється в результаті того, що зростання багатьох кристалів, що почалося, продовжується до тих пір, поки вони не приходять в зіткнення один з одним, утворюючи єдине тіло.

До полікристалам відносяться не тільки метали. Шматок цукру, наприклад, також має полікристалічну структуру.

Більшість кристалічних тіл - полікристали, оскільки вони складаються з безлічі зрощених кристалів. Одиночні кристали - монокристали мають правильну геометричну форму, і їх властивості різні по різних напрямах (анізотропія).

Не всі тверді тіла - кристали. Існує безліч аморфних тіл. Чим вони відрізняються від кристалів?

У аморфних тіл немає строгого порядку в розташуванні атомів. Тільки найближчі атоми - сусіди располагаются в деякому порядку. Але строгою направленості по всім напрямкам одного і того ж елементу структури, яка характерна для кристалів в аморфних тілах, немає.

Часто одна і та ж речовина може знаходитися як в кристаллическом, так і в аморфному стані. Наприклад, кварц SiO2, може бути як в кристаллической, так і в аморфній формі (кремнезем). Кристалічну форму кварцу схематично можна представити у вигляді правильных шестикутників. Аморфна структура кварца також має такий вид, але неправильної форми. Разом з шестикутниками в ній зустрічаються п'яти і семикутники.

У 1959 р. англійський фізик Д. Бернал провів цікаві досліди: він узяв багато маленьких пластилінових кульок однакового розміру, обваляв їх в крейдяній пудрі і спресував у великий ком. В результаті кульки деформувалися в многогранники. Виявилось, що при цьому утворювалися переважно п'ятикутні грані, а многогранники в середньому мали 13,3 граней. Отже якийсь порядок в аморфних речовинах безумовно є.

Властивості аморфних тіл


Всі аморфні тіла ізотропні, тобто їх фізичні властивості однакові по всіх напрямах. До аморфних тіл відносяться скло, смола, каніфоль, цукровий льодяник і ін.

При зовнішніх діях аморфні тіла виявляють одночасно пружні властивості, подібно до твердих тіл, і текучість, подібно рідині. Так, при короткочасних діях (ударах) вони поводяться як тверді тіла і при сильному ударі розколюються на шматки. Але при дуже тривалій дії аморфні тіла течуть. Простежимо за шматком смоли, який лежить на гладкій поверхні. Поступово смола по ній розтікається, і, чим вище температура, тим швидше це відбувається.

Атоми або молекули аморфних тіл, подібно до молекул рідини, мають певний час “осілому життю ” - час коливань біля положення рівноваги. Але в отличаю від рідин це час у них вельми великий. Так, для вару при t = 20oC час “осілого життя ” 0,1 с. В цьому відношенні аморфні тіла близькі до кристалічних, оскільки перескоки атомів з одного положення рівноваги в інше відбуваються рідко.

Аморфні тіла при низьких температурах по своїх властивостях нагадують тверді тіла. Текучістю вони майже не володіють, але у міру підвищення температури поступово розм'якшуються і їх властивості все більш і більш наближаються до властивостей рідин. Це відбувається тому, що із зростанням температури постепенно учащаются перескоки атомів з одного положення в інше. Певної температури тіл у аморфних тіл, на відмінувід кристалічних, немає.

Фізика твердого тіла. Людство завжди використовувало і використовуватиме тверді тіла. Але якщо раніше фізика твердого тіла відставала від розвитку технології, заснованої на безпосередньому досвіді, то тепер положення змінилося. Теоретичні дослідження приводять до створення твердих тіл, свойства яких абсолютно незвичайні. Отримати такі тіла методом проб і помилок було б неможливо. Створення транзисторів, про які піде мова надалі, - яскравий приклад того, як розуміння структури твердих тіл привело до революції у всій радіотехніці.

Отримання материалов із заданими механічними, магнітними, електричними і іншими властивостями - один з основних напрямів сучасної фізики твердого тіла.

Аморфні тіла займають проміжне положення між кристалічними твердими тілами і рідинами. Їх атоми або молекули розташовуються у відносному порядку. Розуміння структури твердих тіл (кристалічних і аморфних) дозволяє створювати матеріали із заданими властивостями.

Деформація твердого тіла - зміна його форми або об'єму. Розтягніть гумовий шнур за кінці. Вочевидь, ділянки шнура змістяться один щодо одного; шнур виявиться деформованим - стане довше і тонше. Деформація виникає завжди, коли різні частини тіла під дією сил переміщаються неоднаково.

Шнур, після припинення дії на нього сил, повертається в початковий стан. Деформації, які повністю зникають після припинення дії зовнішніх сил називаються пружними. Окрім гумового шнура, пружні деформації випробовують пружина, сталеві кульки при зіткненні і так далі

Тепер стисніть шматочок пластиліну. У ваших руках він легко прийме будь-яку форму. Первинна форма пластиліну не відновиться сама собою. Пластилін “не пам’ятаєш яка форма б у нього спочатку. Деформації, які не зникають після припинення дії зовнішніх сил, називаються пластичними. Пластичну деформацію, при невеликих, але не короткочасних діях випробовують віск, клину, свинець.

Деформація розтягування (стиснення). Якщо до одного стрижня, закріпленого одним кінцем, прикласти силу F уздовж осі стрижня в напрямі від цього кінця то стрижень піддасться деформации растяжения. Деформацію розтягування характеризують абсолютним подовженням Dl = l - l0 і відносним подовженням e = Dl / l0

де l0 - початкова довга, а l - кінцева довга стрижня.

Деформацію розтягування испытывают троси, канати, ланцюги в підйомних пристроях, стягування між вагонами і так далі

При малих розтягуваннях (l0 <<l), деформації більшості тіл пружні.

Якщо на той же стрижень подіяти силою F, направленою до закріпленого кінця то стрижень піддасться деформації стиснення. В цьому випадку відносна деформація негативна: e< 0.

При розтягуванні або стисненні змінюється площа поперечного перетину тіла. Це можна виявити, якщо розтягнути гумову трубку, на яку заздалегідь надіто металеве кільце. При достатньо сильному розтягуванні кільце падає. При стисненні, навпаки, площа поперечного перетину тіла збільшується.

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать