Кристаллическая структура керамик Tl2Ba2, полученных с использованием высокого давления

Парадигма самоорганизованной критичности (СОК) была сформулирована Баком в 1987 году (см. например [3]). Согласно концепции СОК, гигантские динамические системы, накапливая малые возмущения, естественным образом эволюционируют к критическому состоянию, которое в дальнейшем является самоподдерживающимся, то есть не требует для своего существования точной подстройки внешних параметров. По своей структуре это критическое состояние является набором большого числа метастабильных критических состояний, по которым блуждает система. Очередное малое внешнее воздействие выводит систему из одного метастабильного критического состояния и порождает в ней динамический процесс ("лавину"), по окончании которого система оказывается в другом метастабильном критическом состоянии. Лавины могут быть как малыми, так и гигантскими, охватывающими всю систему, но и те и другие порождаются одинаково малыми возмущениями. Именно такой тип поведения и был назван самоорганизованной критичностью. Находящаяся в самоорганизованном критическом состоянии система теряет характерные масштабы как длины, так и времени, и ее корреляционные функции имеют степенные асимптотики.

Необходимым условием для существования самоорганизации является наличие большого числа близких метастабильных состояний в системе, между которыми происходят переходы. Как было показано в [4], гранулярные сверхпроводники, которые представляют собой джозефсоновскую среду, удовлетворяют этому условию, если количество квантов магнитного потока, запиннингованных на одном элементарном контуре в сверхпроводнике, образованном соседними гранулами, велико. В этом случае континуальное приближение для джозефсоновской среды неприменимо, а гранулярный сверхпроводник необходимо описывать дискретными уравнениями, которые оказываются полностью аналогичными уравнениям для модельной песочной кучи в задаче о самоорганизации. При этом оказалось, что ВАХ сверхпроводника является пространственно изотропной, то есть не зависит от силы Лоренца, что было подтверждено экспериментально в работах [5, 6].

Численное изучение самоорганизованного критического состояния в различных моделях гранулярных сверхпроводников было проведено в ряде работ (см. например, [7]), где, в частности, было показано, что вероятностное распределение лавин магнитного потока по размерам имеет скейлинговый характер, характерный для самоорганизации, при этом в системе могут возникать гигантские "лавины", которые в нашем случае представляют собой мощные всплески напряжения в образце.

Для исследования из YBaCuO керамики был изготовлен цилиндрический образец с размерами 15.0 ´ 1.8 мм2, на него была намотана измерительная катушка из 60 витков медного провода, образец располагался в двойном медно-пермаллоевом экране, что позволило избавиться от паразитных электромагнитных наводок и земного магнитного поля и обеспечить охлаждение образца в нулевом поле. Внешнее магнитное поле создавалось соленоидом, запитанным от оригинального высокоточного интегратора, что позволяло получать точную линейную развертку по полю. Для уменьшения паразитных шумов и наводок питание предусилителя и интегратора осуществлялось от аккумуляторных батарей.

Изучаемое напряжение с измерительной катушки через согласующий трансформатор, подавалось на усилитель, фильтр низких частот 6 кГц и плату сбора данных в составе персонального компьютера. Приведенное ко входу усиление составило 3.37×106. Время набора реализации могло доходить до двух часов, в зависимости от постоянной времени интегратора, при этом изменение потока, пересчитанное на площадь образца, составляло величину порядка одного кванта потока в секунду, частота отсчетов составляла 20 кГц. Измерения проводились в атмосфере гелия при температуре жидкого азота. При изменении постоянной времени интегратора проводился отогрев образца и его охлаждение в нулевом поле.

Все измерения проводились в низкополевой области, где критический ток не зависел от магнитного поля.

Скачки магнитного потока, проникающего в образец, детектировались как короткие однополярные всплески индуцированного напряжения в измерительной катушке. Эти всплески отсутствовали выше температуры перехода и в неизменном поле.


Рис.5


Для достоверного определения всплеска ЭДС индукции использовался следующий способ: вся реализация разбивалась на куски длительностью в одну секунду, в каждом куске определялась величина стандартного отклонения, всплеск детектировался по превышению пятикратного стандартного отклонения.

На рис.1 приведен фрагмент просуммированной величины всплесков, которая пропорциональна магнитному потоку, проникшему в образец. Видно, что наблюдаются случайные скачки потока разной амплитуды. На рис.2 приведена гистограмма распределения величины всплесков ЭДС индукции. Видно, что проникновение магнитного потока происходит в виде скачков, имеющих степенное распределение, что является прямым подтверждением существования самоорганизованного критического состояния в джозефсоновской среде.


Рис.6.


В связи с поиском новых материалов для твердотельных газовых сенсоров активно изучается влияние адсорбированных молекул на электрофизические свойства полупроводниковых оксидов SnO2, ZnO, WO3, In2O3, а также сложных соединений, например Cr2-хTi хO3, FeNbO4 и др. Нанокристаллический диоксид олова среди изученных веществ нашел наиболее широкое применение, так как он является широкозонным полупроводником n-типа, вследствие чего электропроводность SnO2 оказывается чрезвычайно чувствительной к состоянию поверхности как раз в той области температур 20 - 500 °С, для которой на поверхности оксидов наблюдаются окислительно-восстановительные реакции [1].

Существенным недостатком газовых сенсоров на основе SnO2 является их низкая селективность. Одним из путей повышения селективности является введение в высокодисперсную оксидную матрицу легирующих добавок, как правило, переходных металлов или их оксидов, которые могут влиять на электронные и каталитические свойства поверхности.

Целью работы является исследование структуры и электрофизических свойств пленок композитов SnOх: MnOу, для использования их в качестве чувствительных элементов датчиков газов.

Для получения композиционных наноструктур на основе диоксида олова был применен метод реактивного ионно-лучевого распыления составной мишени из металлического олова и полосок марганца в атмосфере аргона - кислорода. Напылительная установка была изготовлена на основе вакуумного напылительного поста УВН-2М. Параметры напыленных пленок контролировались общепринятыми методами.

Толщина пленок определялась на интерференционном микроскопе МИИ-4. Электрическое сопротивление измеряли четырехзондовым методом (ЦИУС-4). Концентрацию и подвижность носителей заряда определяли с помощью эффекта Холла по методу Ван дер Пау. Газовая чувствительность пленок измерялась как отношение сопротивления пленки на воздухе (Rв) к сопротивлению пленки при напуске в кювету известной концентрации исследуемого газа (Rг): Sg = Rв/Rг.

В результате выполненных исследований установлено, что пленки после изготовления имеют преимущественно аморфную структуру. При высокотемпературном отжиге происходит их кристаллизация и стабилизация электрических параметров. Для стабилизации структуры и электрических параметров пленок применялся трехступенчатый изотермический отжиг при температурах 300 оС, 400 оС и 500 оС в течение 10 часов. Отожженные пленки-нанокомпозиты SnOx: MnOу имеют поверхностное сопротивление 1,7 - 3,3 МОм, тогда, как пленки на основе чистого диоксида олова, полученные при аналогичных режимах, имеют сопротивление лишь десятки килом [2].

Исследовалась газовая чувствительность пленок на основе SnO2 к парам этанола, пропанола, ацетона, аммиака и формальдегида в воздухе. Обнаружено, что нелегированные пленки SnO2 обладают максимальной чувствительностью к парам этанола при температуре 330 оС, а пленки нанокомпозиты, SnOх: MnOу, обнаруживают максимальную чувствительность к парам этанола при более низких температурах, чем пленки нелегированного диоксида олова. Например, нанокомпозиты SnOх: MnOу с процентным содержанием Mn 0,4% ат. обладают максимальной чувствительностью к парам этанола при температуре 220 °С. Пленки SnO2: (1,7% ат) Mn имеют максимальную чувствительность к парам этанола при 180 °С, а пленки SnO2: (5% ат) Mn имеют максимальную чувствительность к парам этанола при 200 °С (рис.1)

Установлено, что пленки SnO2 обладают максимальной чувствительностью к парам ацетона при температуре 360 оС, а пленки-нанокомпозиты, SnOх: MnOу, обнаруживают пары ацетона при более низких температурах, чем пленки нелегированного диоксида олова. Например, нанокомпозиты SnOх: MnOу с процентным содержанием Mn 0,4% ат. обладают максимальной чувствительностью к парам ацетона при температуре 160 °С. Пленки SnO2: (1,7% ат) Mn имеют максимальную чувствительность к парам ацетона при 100 °С, а пленки SnO2: (5% ат) Mn имеют максимальную чувствительность к парам ацетона при 260 °С.


Mn, % ат.

 

Т, оС

 

Рис.7. Зависимость температуры максимальной газовой чувствительности пленок SnOx: MnOу к парам различных веществ в воздухе от процентного содержания марганца в пленках


Установлено, что увеличение количества марганца в составе пленок до 1,7% ат., приводит к снижению температуры максимальной газовой чувствительности пленок к этанолу, аммиаку, ацетону, пропанолу, формальдегиду. Причем, этот эффект для каждого газа проявляется по-разному. Затем наблюдается незначительный рост температуры максимальной газовой чувствительности. Этот результат показывает, что исследованные пленки при их применении в датчиках газов позволят уменьшить величину потребляемой мощности датчика при контроле примесей исследованных газов в воздухе.


Выводы


Применение высокого давления на стадии компактирования исходной шихты позволяет:

1) снизить температуру синтеза керамики Tl2Ba2CaCu2OyFx (х=0; 0,1; 0,2) c 840 0С (для образцов необработанных высоким давлением [4]) до 825 0С;

2) получить более совершенные образцы (по сравнению с образцами, полученными без использования высокого давления), имеющие большую плотность и меньшую ширину перехода (4-7 К);

3) с ростом содержания фтора в системе Tl2Ba2CaCu2OyFx (х=0; 0,1; 0,2) происходит уменьшение носителей заряда (дырок), что сказывается на величине температуры перехода в сверхпроводящее состояние. Управление изменением расстояний Cu-Cu и CuO2 - Ba может явиться одним из способов изменения Тс.


Список литературы


1.                 Volkova L. M., Polyshchuk S. A., Magarill S. A., Herbeck F. E. Journal of Superconductivity: Incorporating Novel Magnetism. 2003. Vol.16. No.6 P.937-939.

2.                 Volkova L. M., Polysgchuk S. A., Herbeck F. E. Journal of Superconductivity: Incorporating Novel Magnetism. 2000. Vol.13. No.4. P.583-586.

3.                 Altomare A., Burla M. C., Giacovazzo C. et al. J. Appl. Cryst. 2001. Vol.34.,P.392 - 397.

4.                 Акимов А.И., Лебедев С.А. Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 2005, №11, с.61-67.

5.                 Young R. A. School of Physics Georgia Institute of Technology. Atlanta. GA 30332.1995. P.105.

6.                 Michel C., Martin C., Hervieu M. et al. Journal of Solid State Chemistry. 1992. Vol.96. pp.271-286.

7.                 Shimakawa Y., Kubo Y., Manako T. et al. Physica C. 1988. Vol.156. pp.97-102

8.                 Faiz M., Hamdan N. M. Journal of Electron Spectroscopy and Related Phenomena. 2000. Vol.107. pp.283-291.

9.                 Akimov A.I., Ksenofontov V., Lebedev S. A. and Tkachenka T. M. Physica C. 2006.443. pp.29-32

10.            Волкова Л.М., Полищук С.А., Магарилл С.А., Соболев А.Н. Неорганические материалы. 2000. том 36. №9, с.1100-1110.

11.            Volkova L. M., Polysgchuk S. A., Magarill S. A., Sobolev A. N., Herbeck F. E. Journal of Structural Chemistry. 2001. Vol.42. No.2. pp.239-243

12.            Абакумов А.М., М.Г. Розова, Ардашкова Е.И., Антипов Е.В. Успехи химии. 2002.71 (5). C.442-460.

13.            Акимов А.И., Лебедев С.А. Огнеупоры и техническая керамика. 2007. №6. C.3-9.


Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать