Люминесценция и дефектоскопия

или

                                                                   (2)

Здесь nП — частота поглощаемого света; nЛ — симметричная частота люминесценции; n0 — частота линии симметрии. При этом по оси ординат для спектров поглощения откладываются коэффициенты поглощения a, а для спектров люминесценции — квантовые интенсивности IКВ=I/n.

Из уравнения (2) видно, что при наличии зеркальной симметрии Dn=nП - nЛ, и nП связаны линейной зависимостью. Если откладывать по оси абсцисс  nП, а по оси ординат Dn, то при строгом выполнении правила должна получиться прямая линия.

Для осуществления зеркальной симметрии необходимо выполнение двух условий — зеркальной симметрии частот и зеркальной симметрии интенсивностей поглощения и люминесценции в соответствующих частях спектра.

Для осуществления симметрии частот необходимо, чтобы энергетические уровни возбужденного и невозбужденного состояний были построены одинаково. Для наличия зеркальной симметрии интенсивностей необходимо, чтобы распределение молекул по энергетическим уровням верхней и нижней систем было одинаковым и чтобы вероятности соответствующих излучательных и поглощательных переходов были равны, или пропорциональны друг другу. Эти условия выполняются лишь у части молекул. У веществ, следующих правилу зеркальной симметрии, можно по одному из спектров (люминесценции или поглощения) без измерений установить форму другого. Отступления от правила зеркальной симметрии могут быть использованы для установления величины отклонений от условий его выполнения.

Правило зеркальной симметрии оказывается весьма полезным при проведении люминесцентного анализа, а также при расшифровке спектров и установлении энергетических уровней исследуемых молекул.

3. Виды люминесцентного анализа и характеристика его особенностей

Люминесцентным анализом называется обнаружение и исследование различных объектов с помощью явлений люминесценции.

1) Химический люминесцентный анализ несёт задачу определения химического состава исследуемых веществ и установление процентного содержания в них отдельных компонентов. Анализ такого вида носит соответственно название качественного и количественного химического люминесцентного анализа.

Качественный химический люминесцентный анализ основан на том, что люминесцентные свойства являются характерным признаком излучающего вещества, тесно связанным с его составом, общим состоянием и структурой его молекул.

Количественный химический люминесцентный анализ основан на использовании определенной зависимости между интенсивностью люминесценции и концентрацией люминесцентного вещества. В большинстве случаев условия анализа подбираются так, чтобы осуществлялась пропорциональность между интенсивностью свечения и концентрацией вещества. Однако такая зависимость имеет место лишь в случаях, когда концентрации невелики. При высоких концентрациях определяемого вещества для осуществления анализа приходится тем или иным способом учитывать сложную зависимость интенсивности свечения от концентрации.

2) Люминесцентные методы измерения температуры.

В их основе лежит температурная зависимость интенсивности люминесцентного излучения некоторых люминофоров, которое находит применение в различных датчиках измерения температуры и термопокрытиях.

2а) Волоконно-оптические датчики позволяют измерять мно­гие характеристики лабораторных и промышленных объектов, в частности температуру. Не смотря на то, что их использование достаточно трудоемко, оно дает ряд преимуществ, использования подобных датчиков на практике: безындукционность (т.е. неподверженность влиянию электромагнитной индукции); малые размеры датчиков, эластичность, механическая прочность, высокая коррозийная стойкость и т.д.

2б) Датчики на основе теплового излучения. Изучаемое вещество при температуре большей 0 К вследствие тепловых колебаний атомов и молекул испускает тепловое излучение. Энергия излучения увеличивается по мере повышения температуры, а длина волны, на которой излучение максимально, уменьшается. Соответственно для определения температуры можно использовать формулу Планка для энергии теплового излучения черного тела на фиксированной длине волны или в диапазоне волн.

Основным преимуществом данного способа является возможность бесконтактного измерения высоких температур. В зависимости от диапазона измеряемых температур выбирают световые детекторы и оптические волокна. Область измерения температур для волоконно-оптических датчиков излучения находится в пределах от 400 до 2000 °С. При использовании оптических волокон, прозрачных для инфракрасных лучей с длиной волны 2 мкм и более, можно осуществлять измерение и более низких температур.

2в) Датчик на основе поглощения света полупроводником. Известны также волоконно-оптические датчики, работа которых основана на оптических свойствах некоторых полупроводников. Используемый полупроводник имеет граничную длину волны спектра оптического поглощения. Для света с более короткой длиной волны, чем у проводника, поглощение усиливается, причем по мере роста температуры граничная длина волны отодвигается в сторону более длинных волн (около 3 нм/К). При подаче на полупроводниковый кристалл луч от источника света, имеющего спектр излучения в окрестности указанной границы спектра поглощения, интенсивность света, проходящего через светочувствительную часть датчика, с повышением температуры будет падать. По выходному сигналу детектора, указанным методом можно регистрировать температуру.

Используя данный метод можно мерить температуру в интервале от 30 до 300 °С с погрешностью ±0,5 °С.

2г) Датчик на основе флуоресценции. Данный датчик устроен следующим образом. На торец оптического волокна светочувствительной части нанесено флуоресцентное вещество. Флуоресцентное излучение, возникающее под воздействием ультрафиолетовых лучей, проводимых оптическим волокном, принимается этим же волокном. Температурный сигнал выявляется путем вычисления отношения соответствующих значений интенсивности флуоресцентного излучения для сигнала с длиной волны, сильно зависящего от температуры к интенсивности сигнала с другой длиной волны, слабо зависящего от температуры.

Область измеряемых температур таким датчиком находится в пределах от -50 до 200 °С с погрешностью ±0,1 °С.

Использование волоконно-оптических датчиков, при всей своей при­влекательности, позволяет производить измерение температуры только в ло­кальной точке объекта, что несколько сужает область их применения.

2д) Области применения люминесцентных методов измерения температуры.

Люминесцентные методы измерения температуры нашли широкое применение в различных отраслях науки и промышленности. В частности, волоконно-оптические датчики на основе люминесцентных методов благодаря своим высоким электро- и теплоизоляционным характеристикам, безы-нерционности, малым габаритам и массе используются в энергетике. На основе таких датчиков созданы системы наблюдения внутри топок тепловых электростанций, устройства для измерения температуры проводов линий передачи и внутри трансформаторов.

В металлургии, химической и нефтеперерабатывающей отраслях зачастую датчики работают в неблагоприятных условиях: повышенные или пониженные температуры, агрессивные среды, сильные электрические и магнитные поля, взрывоопасная атмосфера. Здесь волоконно-оптические датчики с их бесконтактностью и дистанционностью измерений тоже имеют преимущество перед другими методами измерения температуры.

Различные люминесцентные термопокрытия находят свое применение, например, в аэрогидродинамике, в частности для исследования температурных полей на поверхности различных машин, в том числе летательных аппаратов в процессе их эксплуатации.

Термоиндикаторы с люминесцентными составляющими дают, например, возможность своевременно заметить перегревы в движущихся частях различных механизмов, обнаружить нагревание, связанное с перегрузкой электрического оборудования или элементов электрических цепей, контролировать качество теплоизоляции, способствовать предотвращению попадания горячих жидкостей в холодные линии трубопроводов на химических предприятиях и решать многие другие задачи.















4. Люминофоры

 

Люминофоры - люминесцирующие синтетические вещества. По химической природе люминофоры разделяются на неорганические, большинство из которых относится к кристаллофосфорам, и органические.

Органические люминофоры, выпускаемые под названием люмогенов (например, люмоген светло-желтый, люмоген оранжево-красный), - обычно довольно сложные органические вещества разнообразного строения, обладающие яркой люминесценцией под действием ультрафиолетовой и часто также коротковолновой части видимого света. Они применяются как декоративные краски, в полиграфии, для люминесцентной отбелки тканей, в гидрологии — для люминесцентной метки песка, в люминесцентной микроскопии. Краски из органических люминофоров обладают большей яркостью и чистотой цвета, чем обычные. Неорганические люминофоры  разделяются на следующие основные типы:


1) Люминофоры, возбуждаемые светом (фотолюминофоры) находят разнообразные применения, например для аварийного освещения, светящихся красок, маркирующих обозначений.

2) Люминофоры для электронно-лучевых трубок электронно-оптических преобразователей (катодолюминофоры).

3) Люминофоры, возбуждаемые рентгеновскими лучами (рентгенолюминофоры).

Для рентгеновских экранов визуального наблюдения применяются люминофоры с желто-зеленым свечением, соответствующей области наибольшей чувствительности глаза; для рентгенографии – люминофоры  с синим свечением.

4) Люминофоры, возбуждаемые ядерными излучениями. 

Для светящихся красок и в качестве слабых источников света применяются т. н. светосоставы постоянного действия (СПД) – люминофоры  с примесью небольшого количества радиоактивного вещества. Первоначально к люминофорам добавлялись естественные а-радиоактивные вещества (Ra или Тh). Срок работы таких СПД ограничивается радиационным повреждением люминофоров Этим недостатком не обладают СПД с b-излучателями, в качестве которых применяются некоторые изотопы с малой энергией b-частиц. Разрабатывается применение газообразного Kr85 в баллонах, покрытых люминофором изнутри. Люминофоры для регистрации ядерных излучений в сцинтилляционных счетчиках, применяемые в виде больших неорганических или органических монокристаллов, а также пластмасс и жидких растворов, называются сцинтилляторами.

5) Электролюминофоры.

6) Кристаллофосфоры (от кристаллы и греч. phōs — свет, phóros — несущий). Кристаллофосфоры люминесцируют под действием света, потока электронов, проникающей радиации, электрического тока и т. д.  Кристаллофосфорами могут быть только полупроводники и диэлектрики. Механизм свечения кристаллофосфорв в основном рекомбинационный. Спектр люминесценции кристаллофосфоров может меняться от ультрафиолетового до инфракрасного. Порошкообразные кристаллофосфоры используются в люминесцентных лампах, экранах телевизоров и осциллографов, электролюминесцентных панелях и т. д.

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать