Магнитопроводы

Магнитопроводы

ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ МАГНИТОПРОВОДОВ

ОБЩИЕ ПОЛОЖЕНИЯ

Магнитопроводом называется деталь или комплект деталей, предназначенных для прохождения с определенными потерями магнитного потока,  возбуждаемого электрическим током в обмотках намоточный изделий.

Магнитопроводы являются составными частями схемотехнически элементов РЭА: трансформаторов, дросселей, магнитных головок, фильтров, контуров, запоминающих устройств и др. Форма деталей




Рис. 12.1

образующих магнитопровод, а также вид и физические свойства материалов, используемых для их изготовления, обусловлены назначением; конструктивными особенностями схемного элемента. По этим признакам магнитопроводы разделяют на три группы: пластинчатые, лентные и формованные.

Пластинчатые магнитопроводы представляют собой пакеты, собранные из штампованных плоских пластин. Они бывают двух типов (рис. 12.1): броневые (а) и стержневые (б).





Ленточные магнитопроводы имеют форму круглых (рис.  12.2,а ) или   прямоугольных  со  скругленными  углами   колец (рис.   12.2,б ) полученных спиральной навивкой на оправку одной ленточной заготовки или П-образной гибкой нескольких предварительно нарезанных полос. Во втором случае кольца получаются разъемными с плоскостью разреза (рис. 12.2, в). Неразрезные ленточные магнитопроводы характеризуются лучшими магнитными характеристиками по сравнению с раз-резными ленточными и пластинчатыми,   так как в последних неизбежны воздушный зазор и частичное замыкание торцов. Однако неразрезные ленточные магнитопроводы имеют следующие недостатки:  сложность и большая трудоемкость намоточных работ. Достоинством разрезных ленточных магнитопроводов является то, что катушки для них можно изготавливать на обычных намоточных станках.

Формованные магнитопроводы состоят из одной или нескольких монолитных объемных деталей, изготовленных из порошкообразных магнитодиэлектриков или ферритов с использованием керамической технологии (формование и спекание).

Формованные магнитопроводы нашли широкое применение в высокочастотных устройствах РЭА. На рис. 12.3 дан пример броневого магнитопровода из магнитодиэлектрика: а — с замкнутой; б — с разомк- нутой магнитной цепью (/ — подстроечник, 2 — верхняя чашка, 3 — нижняя чашка). На рис. 12.4 приведены некоторые образцы магнитопроводов из ферритов: рис. 12.4, а_и б — замкнутый П-образный прямо угольного сечения; рис. 12.4, в и г —замкнутый П-образный круглого сечения,   рис.    12.4,    д — О-образный;   рис.    12.4,   е — Г-образный, рис. 12.4, ж — Е-образный; рис. 12.4, з.— магнитной головки.

 

ТЕХНОЛОГИЧЕСКИЕ  МЕТОДЫ ДОСТИЖЕНИЯ ЗАДАННЫХ ФИЗИЧЕСКИХ СВОЙСТВ, ТОЧНОСТИ РАЗМЕРОВ  И КАЧЕСТВА ПОВЕРХНОСТИ МАГНИТОПРОВОДОВ

Магнитопроводы должны иметь высокую магнитную проницаемость, незначительную коэрцитивную силу, стабильные магнитные характеристики в рабочем диапазоне температур и во времени, минимальные потери на гистерезис, рассеивание и вихревые токи, устойчивость к посторонним механическим воздействиям.

Соответствие физических свойств магнитопровода этим требованиям достигается, прежде всего, выбором магнитного материала и построением ТП. При переработке магнитных материалов в детали магнитопроводов исходные магнитные свойства их изменяются под тепловым и силовым воздействием инструментов и технологических сред. По этой причине в ТП изготовления включают ряд операций по контролю и восстановлению магнитных свойств деталей магнитопроводов, а условия выполнения операций формообразования подбирают с расчетом на то, чтобы минимально воздействовать на изменения этих свойств.

В качестве магнитных материалов используют электротехническую сталь, железой никелевые сплавы, магнитодиэлектрики и ферриты. Электротехнические стали, и пермаллои применяют в виде горячекатанного и холоднокатанного проката на листах и рулонах толщиной 0,04—0,5 мм. Горячекатаные стали используют в магнитопроводах, работающих на низких частотах, а холоднокатаные — в магнитопроводах с повышен­ными магнитными характеристиками. Железоникелевые сплавы (пермаллои) характеризуются в 10—20 раз большей магнитной  проницаемостью в слабых магнитных полях по сравнению с электротехнической сталью.  Высоконикелевые пер­маллои (72—80% никеля) марок 79НМ, 80НХС и другие используют для изготовления сердечников малогабаритных дросселей и трансформаторов низкой частоты, магнитных головок и др. Низконикелевые пермаллои (30—50% никеля)   марок 8НС, 45Н, 50Н, 50НХС и другие применяют для изготовления магнитопроводов силовых трансформаторов и дросселей, магнитных головок и др.

Электротехнические стали и пермаллои характеризуются малым удельным электрическим сопротивлением (10-7—10-6Ом'М). Использование их в магнитопроводах, работающих на высоких частотах, не представляется возможным из-за больших потерь на вихревые токи, возрастающих про­порционально квадрату частоты. Для магнитопроводов, работающих  на высоких частотах, используют магнитодиэлектрики, которые состоят из зерен магнитного материала, разделенных диэлектриком. По сравнению с металлическими магнитными материалами они характеризуются более высоким электрическим сопротивлением (10-3—1 Ом-м). В качестве магнитопроводов из магнитодиэлектриков берут карбонильное железо (высокодисперсный порошок, состоящий в основном из частиц сферической формы), альсифер (магнитомягкий сплав с высокой магнитной проницаемостью, содержащий' около 9,5% кремния и 5,5% алюминия, остальное — железо; ГОСТ 122187—76) и пермаллои.

Основные достоинства магнитодиэлектриков: малые потери на вихревые токи, стабильные магнитные характеристики в рабочем интервале температур и во времени. К числу недостатков следует отнести небольшую магнитную проницаемость (1,26·10-5 — 7,53·10~б Гн/м) на радиочастотах, что ограничивает возможность повышения добротности различных индуктивных элементов. Для работы с малыми потерями на высоких частотах до нескольких десятков мегагерц используют магнитные материалы керамического типа, ферриты, получаемые спеканием при высокой температуре смеси окислов железа с окислами никеля, цинка, марганца, магния, меди или другого двухвалентного металла. Ферриты характеризуются высокой магнитной     проницаемостью   (1,26·10-5  — 2,52 • 10ֿ³ Гн/м)  и удельным электрическим сопротивлением  (1 - 105  Ом•м)

Для обеспечения требуемой точности и формы и размеров при изготовлении пластинчатых магнитопроводов с заданной шероховатостью поверхности используют штамповку, обработку  резанием и физико-химические методы. При штамповке и обработке резанием в поверхностных слоях материала в результате силового воздействия инструмента кристаллы правильной формы, характерные для исходного материала, разрушаются и ориентируются в направлении движения инструмента.  В результате ухудшаются характеристики магнитопроводов, например, магнитная проницаемость уменьшается, а коэрцитивная сила увеличивается. Для восстановления магнитных характеристик материала проводят отжиг, вызывающий рекристаллизацию материала.

При изготовлении разрезных ленточных магнитопроводов разрезание является одной из ответственных операций. Отклонение режимов этой операции от оптимальных может привести к появлению короткозамкнутых витков и наклепу, в результате возрастут потери на вихревые токи. Разрезание магнитопроводов осуществляют различными способами,  например, фрезерованием, абразивным кругом, электроискровой обработкой и т. д. При фрезеровании поверхность разреза получается неровной, а витки магнитопровода оказываются короткозамкнутыми. Кроме того, имеет место наклеп и изменение ориентации зерен   в   месте   разреза.   Разрезание   магнитопроводов  абразивным  кругом  (шероховатость обработанной поверхности Rа    1,25   мкм) и электроискровой   обработкой (Rz 20 мкм) дают лучшие результаты. После разрезания абразивным кругом отпадает необходимость применения последующего шлифования. Электроискровая обработка позволяет избежать механического воздействия на магнитопровод и замыкание отдельных его витков. Поверхностный слой, в котором в результате теплового воздействия происходит изменение ориентации зерен   до  глубины  0,05—0,08, мм,   удаляется при последующем шлифовании торцов магнитопровода.

Точность размеров, формы и качество поверхности формованных магнитопроводов обеспечивается точностью размеров и шероховатостью поверхности оформляющей полости пресс-форм. Магнитные характеристики формованных магнитопроводов обеспечиваются качеством порошка магнитного материала и материала диэлектрической связи. Количество связки при изготовлении магнитопроводов должно быть по возможности минимальным, так как ее увеличение резко снижает магнитную проницаемость магнитопровода и увеличивает диэлектрические потери. Формовочная смесь на основе полистирола обладает хорошей текучестью, поэтому ее используют для изготовления сложных по форме магнитопроводов. Магнитная проницаемость формованных магнитопроводов зависит от их плотности, которая обеспечивается выбором давления при прессовании. С увеличением давления прессования магнитная проницаемость возрастает до определенного значения для данного типа магнитного материала. При дальнейшем увеличении давления прессования возрастают потери на гистерезис, так как имеет место пластическая деформация феррочастиц, возрастает электропроводность и потери на вихревые токи  из-за  разрушения изоляционной пленки вокруг феррочастиц.

Оптимальное давление прессования для магнитодиэлектриков лежит в интервале 600— 1000 МПа, а для ферритов — 80-200 МПа. Продолжительность выдержки под нагрузкой не влияет на плотность магнитного материала.   Обеспечение равномерной плотности магнитного материала в формованном магнитопроводе осуществляется прессованием в пресс-формах с двойным давлением сверху и снизу. Кроме того, в магнитопроводах из ферритов в случае неравномерной плотности при последующем спекании возникают значительные внутренние напряжения, вызывающие коробление и растрескивание. Для исключения   растрескивания  магнитопроводов  из  ферритов проводят   следующие  технологические  мероприятия:   перед спеканием нагревом из них удаляют   связку; при  спеканий скорость подъема температуры ограничивают 200—300 К/ч из-за   быстрого   испарения   оставшейся   связки;    после выдержки при температуре спекания требуется медленное охлаждение со скоростью 50—100-.К/Ч.

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать