Магнитоупругий эффект

Магнитоупругие трансформаторные преобразователи могут работать также с автоматическими потенциометрами переменного тока.

Погрешность магнитоупругих преобразователей. Функция преобразования магнитоупругих преобразователей, как правило, нелинейна. Имеется ряд методов уменьшения нелинейности. Нелинейность уменьшается при сокращении диапазона измерения измеряемой силы; если наряду с измеряемой силой преобразователь нагружается некоторой дополнительной постоянной силой; при соответствующем выборе магнитного режима преобразователя; при применении магнитоанизотроп-ных материалов, имеющих различную магнитную проницаемость в различных направлениях. Такие материалы получают в результате определенной технологической обработки — ковки, протяжки, прокатки и т. д. Применение этих мер позволяет уменьшить погрешность, происходящую вследствие нелинейности, до 1,5—2 %.

Функция преобразования при увеличении нагрузки магнитоупру-гих преобразователей отличается от функции преобразования при уменьшении нагрузки. Это отличие имеет гистерезисный характер и обусловлено магнитным и механическим гистерезисом. При статических измерениях гистерезис преобразователя больше, чем при динамических. Для уменьшения погрешности, вызванной гистерезисом, рекомендуется изготавливать преобразователи из материалов, имеющих возможно больший предел упругости и возможно меньшую петлю магнитного гистерезиса. Максимальные механические напряжения в магни-тоупругом материале должны быть в 6—7 раз меньше его предела упругости. Погрешность, обусловленная гистерезисом, уменьшается после тренировки преобразователя. Тренировка производится 5—1 Обратным нагружением силой, соответствующей пределу изменения преобразователя. Гистерезис может возникнуть также в результате сил трения, если, например, магнитопровод не сплошной, а составной. Приведенную погрешность, вызванную гистерезисом, можно снизить до 0,5-1 %.

Магнитоупругому преобразователю свойственно старение. При этом изменяется как магнитная проницаемость, так и внутреннее напряжение в материале преобразователя. Старение приводит к изменению электрических параметров (L, Л ) и к изменению чувствительности. Изменение характеристик уменьшается после естественного (в течение нескольких месяцев) или ускоренного искусственного старения. Характеристики стабилизируются путем термообработки магнитопровода. Погрешность, вызванную изменением параметров, можно уменьшить применением дифференциальных преобразователей и дифференциальных схем включения. Таким образом, погрешность, обусловленную старением, можно уменьшить до 0,5 %.

При изменении температуры изменяются магнитная проницаемость магнитопровода и электрическое сопротивление обмоток. При резко выраженном поверхностном эффекте изменение температуры оказывает меньшее влияние, чем при слабо выраженном. Для уменьшения температурной погрешности используются дифференциальные схемы и специальные схемы температурной компенсации.


2. ИСПОЛЬЗОВАНИЕ МАГНИТОУПРУГОГО ЭФФЕКТА ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН


2.1 Измерение силы


Магнитоупругие датчики. Вопрос о максимальной точности, которая может быть достигнута при измерении усилий с помощью магнитоупругих датчиков, по существу, является вопросом о перспективности дальнейшего развития работ по широкому применению силоизмерителей этого вида. Техническая и экономическая целесообразность применения магнитоупругих датчиков в различных отраслях промышленности в случаях, когда допустимы погрешности, превышающие 2-3%, в настоящее время ни у кого не вызывает сомнений. С помощью магнитоупругих датчиков оказываются выполнимыми самые различные задачи измерения усилий, причем обеспечиваются они при высокой надежности, компактности и конструктивности устройств. По работоспособности, долговечности, устойчивости в работе устройства этого класса не имеют себе равных.

Погрешности измерений, не превышающие 1-0,5%, вполне достижимы.

Температурная погрешность (среднеквадратичное значение) при колебаниях температуры датчика до 100°С не выходит за пределы 0,5%, при сужении температурного диапазона — она соответственно уменьшается. Среднеквадратичное значение погрешности от магнитоупругого гистерезиса не превышает 0,2%.

Среднеквадратичная погрешность, возникающая вследствие нелинейности характеристики, во всем диапазоне измеряемых усилий (100%) не превышает 0,3%. В более узком диапазоне (80%) не выходит за пределы 0,1%. Если принять, что погрешность, возникающая вследствие нестабильности источника питания, составляет 0,2%, общая среднеквадратичная погрешность не выйдет за пределы 0,65%.

Преобразование измеряемого механического параметра в электрическую величину в магнитоупругом датчике (МД) осуществляется последовательно в три основных этапа.

На первом этапе происходит преобразование измеряемого параметра в механическое напряжение в материале чувствительного элемента датчика. Конструктивными элементами датчика, осуществляющими механическое преобразование, являются внешний механический преобразователь и чувствительный элемент.

С помощью внешнего механического преобразователя измеряемый параметр может изменяться по величине, знаку или виду. Так, например, в некоторых датчиках, измеряющих растягивающее усилие, измеряемый параметр преобразуется в усилие сжатия чувствительного элемента, а в датчиках, измеряющих сжимающее или растягивающее усилие, параметр преобразуется в усилие скручивания чувствительного элемента и т. п.

На втором этапе происходит преобразование напряжения, возникающего в материале чувствительного элемента, в изменение его магнитных характеристик. На третьем этапе изменения магнитных характеристик материала чувствительного элемента преобразуются с помощью электромагнитного преобразователя в изменение выходных электрических параметров датчика.

В катушечном магнитоанизотропном датчике (рисунок 2.1) суммарный вектор магнитного потока, сцепленного с катушкой возбуждения 1, направлен внутри чувствительного элемента 3 под углом 45° к векторам главных механических напряжений. Магнитная ось измерительной катушки 2 расположена перпендикулярно к оси катушки возбуждения, благодаря чему при отсутствии измеряемой нагрузки и полной магнитной изотропности материала чувствительного элемента потокосцепление с измерительной катушкой 2, а следовательно, и коэффициент взаимоиндукции равны нулю.


Рисунок 2.1 – Катушечный магнитоанизотропный датчик.


При действии измеряемого усилия магнитное поле внутри чувствительного элемента становится асимметричным, поэтому появляется составляющая магнитного потока, сцепленная с измерительной катушкой, в которой наводится э. д. с., являющаяся функцией измеряемого усилия.

Конструктивное исполнение и основные типы

Магнитоупругий динамометр может быть выполнен в виде катушки с замкнутым сердечником из магнитомягкого материала.


Рисунок 2.2 Схема включения магнитоупругого динамометра


Рисунок 2.3. Картина силовых линий магиит-вого поля в магннтоупругом тензометре; в — без нагрузки; б — под нагрузкой

Изменение измерено с помощью известных электрических схем (рисунок 2.2). Получающиеся при этом большие измерительные сигналы исключают необходимость применения измерительных усилителей. Другая возможность использования магнитоупругого эффекта показана на рисунке 2.3. В пластинах из листовой стали имеются четыре отверстия. В этих отверстиях помещены две пересекающиеся обмотки, одна из которых включена в цепь питания, другая — в цепь измерения. При нагружении этого чувствительного измерительного элемента ранее симметричное магнитное поле искажается и в измерительной обмотке возбуждается напряжение, пропорциональное нагружение (рисунок 2.3,б).

Некоторые характерные особенности

1 Магнитоупругие динамометры предназначены преимущественно для грубых квазистатических промышленных измерений.

2 Вследствие не очень большой удельной нагрузки деформация чувствительного элемента меньше 0,1 мм.

3 Магнитоупругие динамометры изготовляют на номинальные силы от 1 до 2,5 Н. Выходное напряжение ~0,2 В; измерительный усилитель не требуется. Класс точности от 0,1 до 0,2 %.

4 Измерительные элементы динамометров могут быть в любом количестве наложены один на другой или расположены рядом. Они могут быть выполнены в виде четырехугольных измерительных пластин для сил до 50 МН. Равным образом могут быть также изготовлены круглые и кольцевые динамометры. Поэтому эти магнитоупругие динамометры обычно пригодны для применения в тяжелой промышленности, особенно в прокатных цехах, для измерения больших сил. Особым их преимуществом является малая высота. Их выходное напряжение может составлять 10 В, измерительный усилитель не требуется. Класс точности — от 0,1 до 2 %.

Первые отечественные конструкции МД сжимающих усилий были разработаны Ф. В. Майоровым. За последнее десятилетие в нашей стране и за рубежом получили промышленное применение десятки различных конструкций МД. Многообразие конструкций объясняется не только поисками наилучшего варианта исполнения МД, но также и различными требованиями, предъявляемыми к их выходным характеристикам при работе в той или иной электрической схеме.

Для контроля целого ряда параметров на шахтном подъеме и транспорте институтом автоматики (Киев) разработаны магнитоупругие датчики сжимающих усилий дроссельного типа МДУ.

Чувствительный элемент 1 этого датчика (рисунок 2.4) выполнен в виде прямоугольного пакета с окном и собран на заклепках из листов электротехнической стали Э41 толщиной 0,35 мм.


Рисунок 2.4 - Магнитоупругий датчик сжимающих усилий дроссельного типа


Чувствительный элемент 1 с обмотками 2, залитый компаундом, устанавливается внутри стального корпуса 3. На торцевую поверхность чувствительного элемента ложится стальной сферический сегмент 4, который прижимается крышкой 5, навинчиваемой на корпус. Крышка имеет небольшие кольцевые гофры, которые обеспечивают ее подвижность в небольших пределах. Вследствие этого практически исключается по- явление погрешности при передаче усилия на чувствительный элемент. Верхняя вывинчивающаяся часть 6 крышки предназначена для регулировки высоты МД.

Режим намагничивания датчиков ДМУ выбирается в зависимости от того, какие необходимо получить выходные параметры.

При его работе б схемах непрерывного контроля выбирается такой режим, при котором изменение полного электрического сопротивления МД максимально. Например, в датчике ДМУ-2 при оптимальной напряженности магнитного ноля в материале чувствительного элемента 58 а/м и максимальном механическом напряжении 16* 107 н/мг полное электрическое сопротивление МД изменяется в 7,5 раза. Максимальное же относительное изменение выходной мощности этого датчика, равное 274%, происходит при напряженности магнитного поля 500 а/м.

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать