где gА± - отношение числа вторичных ионов (положительных или отрицательных) элемента А к полному числу нейтральных и заряженных распыленных частиц данного элемента, а СА -атомная концентрация данного элемента в образце. Множитель S - полный коэффициент распыления материала (число атомов на один первичный ион). В него входят все частицы, покидающие поверхность, как нейтральные, так и ионы. Величины gА± и S сильно зависят от состава матрицы образца, поскольку отношение gА± связано с электронными свойствами поверхности, а S в большой степени определяется элементарными энергиями связи или теплотой атомизации твердого тела. Любой теоретический способ пересчета измеренного выхода вторичных ионов в атомные концентрации должен, давать абсолютное значение отношения gА± или набор его приведенных значений для любой матрицы.
Фиг.4. Энергетический спектр электронов, рассеянных при соударении с твердотельной мишенью [2].
Вторичный ионный ток iА± (число ионов в секунду), измеряемый в приборе ВИМС, дается выражением
iА± =hASA±IP, (2)
где iА± - ионный ток для моноизотопного элемента (для данного компонента многоизотопного элемента ионный ток равен faiА±, где fa,- содержание изотопа а в элементе А). Величина hA -эффективность регистрации ионов данного изотопа в используемом приборе ВИМС. Она равна произведению эффективности переноса ионов через масс-анализатор на чувствительность ионного детектора. Множитель hA обычно можно рассматривать как константу, не зависящую от вида элемента или массы изотопа, если энергетические распределения вторичных ионов примерно одинаковы и имеют максимум при нескольких электрон-вольтах, так что зависящее от массы изменение чувствительности детектора частиц мало. Наконец, IP полный ток первичных ионов (число ионов в секунду), падающих на образец.
Конечно, величина IP связана с плотностью тока первичных ионов DP (число ионов за секунду на 1 см2) и диаметром пучка d (см). Если для простоты принять, что сечение пучка круглое, а плотность DP тока постоянна в пределах сечения, то
IP=(0,25p)DPd2. (3)
При существующих источниках первичных ионов, используемых в приборах ВИМС, плотность тока на образец, как правило, не превышает 100 мА/см2 (в случае однозарядных ионов ток 1 mА соответствует потоку 6.2 1015 ион/с). В табл. 1 приводятся типичные значения параметров, входящих в формулы (1) - (3).
Таблица 1.
Типичные значения параметров
в формулах (1)- (3) [1].
gА± |
10-5¸10-1 |
S |
1¸10 |
hA |
10-5¸10-2 |
DP |
10-6¸10-2 mA/cm2 |
d |
10-4¸10-1 cm |
Самое важное значение в вопросе о возможностях ВИМС как метода анализа поверхностей имеет взаимосвязь между параметрами пучка первичных ионов, скоростью распыления поверхности и порогом чувствительности для элементов. Из-за отсутствия информации о такой взаимосвязи часто возникают неправильные представления о возможностях метода. Соотношения между током первичных ионов, диаметром и плотностью пучка, скоростью распыления
поверхности и порогом чувствительности при типичных условиях иллюстрируются графиком, представленным на фиг.5. Скорость удаления (число монослоев в секунду) атомов мишени при заданной энергии ионов пропорциональна плотности их тока DP, а порог чувствительности при регистрации методом ВИМС (минимальное количество элемента, которое можно обнаружить в отсутствие перекрывания пиков масс-спектра) обратно пропорционален полному току ионов IP. Коэффициент пропорциональности между порогом чувствительности ВИМС и IP определяется исходя из результатов измерений для ряда элементов в различных матрицах путем приближенной оценки, основанной на экспериментальных значениях для типичных пар элемент - матрица. При построении графика на фиг.5 предполагалось, что площадь захвата анализатора, из которой вторичные ионы отбираются в анализатор, не меньше сечения пучка первичных ионов. Данное условие обычно выполняется в масс-спектрометрии, если диаметр области, из которой поступают ионы, не превышает 1 мм.
Фиг. Зависимость между током первичных ионов, диаметром и плотностью первичного
пучка, скоростью удаления атомных слоев и порогом чувствительности ВИМС[1].
Распыление ионным пучком - разрушающий процесс. Но если требуется, чтобы поверхность оставалась практически без изменения, то анализ методом ВИМС можно проводить при очень малых скоростях распыления образца (менее 10-4 монослоя в секунду) . Чтобы при этом обеспечить достаточную чувствительность метода ( »10-4 монослоя), как видно из фиг.5, необходим первичный ионный пучок с током 10-10 А диаметром 1 мм. При столь низкой плотности тока первичных ионов ( 10-5 мА/см2) скорость поступления на поверхность образца атомов или молекул остаточных газов может превысить скорость их распыления первичным пучком. Поэтому измерения методом ВИМС в таких условиях следует проводить в сверхвысоком или чистом (криогенном) вакууме.
Указанные приборные условия приемлемы не во всех случаях анализа. Например, определение профиля концентрации примесей, присутствующих в малых количествах в поверхностной пленке толщиной свыше 5ОО А, удобно проводить при диаметре пучка, равном 100 мкм, и при скорости распыления, превышающей 10-1 атомных слоев в секунду. Еще более высокие плотности ионного тока требуются, чтобы обеспечить статистически значимые количества вторичных ионов с единицы площади поверхности, необходимые при исследовании распределения по поверхности следов элементов при помощи ионного микрозонда или масс-спектрального микроскопа. На основании сказанного и данных фиг.5 мы заключаем, что невозможно обеспечить поверхностное разрешение в несколько микрометров для примеси, содержание которой равно »10-4%, при скорости распыления менее 10-3 атомных слоев в секунду. Это взаимно исключающие условия.
Методом ВИМС анализ поверхности можно проводить в двух разных режимах: при малой и большой плотности тока, распыляющего образец. В режиме малой плотности распыляющего тока изменяется состояние лишь малой части поверхности, благодаря чему почти выполняется основное требование, предъявляемое к методам анализа самой поверхности. В режиме же высоких плотностей токов и соответствующих больших скоростей распыления проводится измерение профилей распределения элементов по глубине, микроанализ и определение следовых количеств элементов (<10-4%). В соответствии со всеми этими вариантами создан ряд приборов ВИМС, в которых применяются разные способы создания и фокусировки первичных ионных пучков и разные анализаторы вторичных ионов.
Оборудование ВИМС.
Установка ВИМС состоит из четырех основных блоков: источника первичных ионов и системы формирования пучка, держателя образца и вытягивающей вторичные ионы линзы, масс-спектрометра для анализа вторичных частиц по отношению массы к заряду (m/е) и высокочувствительной системы регистрации ионов. Для получения первичных ионов в большинстве установок используются газоразрядные или плазменные источники. Совместно с соответствующей системой формирования и транспортировки пучка эти источники обеспечивают широкие пределы скорости распыления поверхности - от 10-5 до 103 А/с. Разделение вторичных частиц по m/е производится либо магнитными, либо квадрупольными анализаторами. Наиболее широко распространенным анализатором в установках ВИМС, очень удобным при анализе состава образцов и обнаружении малых количеств (следов) элементов в них, является магнитный спектрометр с двойной фокусировкой (в котором осуществляется анализ по энергии и по импульсу), что связано с его высокой чувствительностью к относительному содержанию. Для таких многоступенчатых магнитных спектрометров фоновый сигнал, возникающий из-за хвостов основных пиков материала матрицы (рассеяние стенками, на атомах газа и т.д.), может быть сведен к уровню менее 10-9 для общего фона и всего 10-6 для масс, близких к основному пику. Все же в отдельных конкретных случаях более практичным может оказаться менее дорогой квадрупольный анализатор.
Принцип действия установок.
Фиг.6. Схема обычного метода и метода прямого изображения при
масс- спектрометрическом анализе вторичных ионов[1].
При масс-анализе вторичных ионов применяются два основных метода: обычный масс-спектрометрический и метод прямого изображения. Они схематически сопоставлены на фиг.6. При первом методе анализатор с хорошим разрешением передает на высокочувствительный ионный детектор заметную часть быстрых вторичных ионов, идущих с большой площади образца (» 1 мм2). Выделенные по массе вторичные частицы собираются в точечный фокус на входной щели детектора. В этом статическом случае получаемая информация усредняется по поверхности образца и невозможно установить, из какой точки (например области диаметром 1 мкм) поверхности приходят вторичные ионы. При методе прямого изображения в фокальной плоскости анализатора создается стигматическое ионное изображение поверхности и путем соответствующего дифрагмирования (или преобразования изображения при помощи чувствительной к электронам или ионам эмульсии) легко можно получить информацию о точках выхода ионов с данными m/e с поверхности образца.
Все установки с прямым изображением основан на идее прибора Кастэна и Слодзяна; все иные приборы представляют собой варианты обычной масс-спектрометрической методики. Для получения вторично-ионного изображения поверхности при обычном подходе необходимо проводить последовательный анализ вторичных частиц при сканировании поверхности