Механика жидкостей и газов в законах и уравнениях

Механика жидкостей и газов в законах и уравнениях

ГОУ ВПО

ОМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ

Реферат на тему:

МЕХАНИКА  ЖИДКОСТЕЙ и газов

Выполнил:

Студент гр. МС-116

Оконешников А.В.

Проверил:

Шевченко С.С.

Омск - 2007

1.   МЕХАНИКА  ЖИДКОСТЕЙ

Совокупность   векторов   v(t), заданных для  всех точек   пространства,  называется  полем    вектора скорости.   Это   поле   можно   наглядно   изобразить с помощью   линий   тока   (рис. 39.1).  Линию тока









Рис. 39.1. Линии тока проводятся так, чтобы вектор v в каждой точке пространства был направлен по касательной к соответствующей линии

 

Рис.39.2.  За время Δt через поверхность S пройдут все частицы жидкости, заключённые в объёме между S и S’

 
 






можно провести через любую точку пространства. Если построить все мыслимые линии тока, они просто сольются друг с другом. Поэтому для наглядного представления течения жидкости строят лишь часть линий, выбирая их так, чтобы густота линий тока была численно равна модулю скорости в данном месте. Тогда по картине линий тока можно судить не только о направлении, но и о модуле вектора v в разных  точках пространства. Например, в точке А на рис.39.1 густота линий, а следовательно и модуль v, чем в точке В. Поскольку разные частицы жидкости могут проходить через данную точку про­странства с разными скоростями (т. е. v = v(t)), кар­тина линий тока, вообще говоря, все время изме­няется. Если скорость в каждой точке пространства остается постоянной (V=const), то течение жидко­сти Называется стационарным (установившим­ся). При стационарном течении любая частица жидкости проходит через данную точку пространства с од­ной и той же скоростью v. Картина линий тока при стационарном течении остается неизменной, и линии тока в этом случае совпадают с траекториями частиц. Если через все точки небольшого замкнутого контуpa провести  линии тока, образуется поверхность, которую называют  трубкой тока. Вектор v  касателен к поверхности трубки тока в каждой ее точке. Следовательно, частицы жидкости при своем движе­нии не пересекают стенок трубки тока.

Возьмем трубку тока, достаточно тонкую для того, чтобы во всех точках ее поперечного сечения S скорость частиц v была одна и та же (рис. 39.2). При стационарном течении трубка тока подобна стен­кам жесткой трубы. Поэтому через сечение 5 прой­дет за время Δt объем жидкости, равный SvΔt, а в единицу времени объем

                      

(39.1)

     

Жидкость, плотность которой всюду одинакова и изменяться не может, называется  несжимаемой. На рис.  39.3 изображены два сечения очень тонкой  трубки тока — S1 и S2. Если жидкость несжи­маема , то кол – во ее между этими сечениями остается неизменным. От­сюда следует, что


Рис 39.4. При движении в сужающейся трубке скорость частиц возрастает – частицы движутся ускоренно.

 

Рис39.3. Для несжимаемой жидкости при стационарном течении S1v1=S2v2

 
 



объемы жидкости, протекающие в единицу времени через сечения S1 и S2, должны быть одинаковыми:


 

(39.2)

(напомним, что через боковую поверхность трубки тока частицы жидкости не проникают).

Равенство (39.2) справедливо для любой пары произвольно взятых сечений. Следовательно, для не­сжимаемой жидкости при стационарном течении про­изведение Sv в любом сечении данной трубки тока имеет одинаковое значение:

 

 (39.3)


Это утверждение носит название теоремы о неразрывности  струи.

Мы получили формулу (39.3) для несжимаемой жидкости. Однако она применима к реальным жидко­стям и даже к газам в том случае, когда их сжимае­мостью можно пренебречь. Расчеты показывают, что при движении газов со скоростями, много меньшими скорости звука в этой среде, их можно с достаточной точностью считать несжимаемыми.

Из соотношения (39.3) вытекает, что при изме­няющемся сечении трубки тока частицы несжимаемой жидкости движутся с ускорением (рис. 39.4). Если трубка тока горизонтальна, это ускорение может быть обусловлено только непостоянством давления вдоль трубки — в местах, где скорость больше, давление должно быть меньше, и наоборот. Аналитическую связь между скоростью течения и давлением мы уста­новим в следующем параграфе.

2. Уравнение Бернулли

В реальных жидкостях при перемещении слоев жидкости друг относительно друга возникают силы внутреннего трения, тормозящие относительное сме­щение слоев. Воображаемая жидкость, у которой внутреннее трение полностью отсутствует, называется идеальной. Течение идеальной жидкости не со­провождается диссипацией энергии (см. предпослед­ний абзац § 24).

Рассмотрим стационарное течение несжимаемой идеальной жидкости. Выделим объем жидкости, огра­ниченный стенками узкой трубки тока и перпендику­лярными к линиям тока сечениями S1 и S2 (рис. 40.1), За время А/ этот объем сместится вдоль трубки тока, причем граница объема S1 получит перемещение Δl, а граница S2 — перемещение Δl2. Работа, совершае­мая при этом силами давления, раина приращению полной энергии (Ek + Ep), заключенной в рассматри­ваемом объеме жидкости.

Силы давления на стенки трубки тока перпенди­кулярны в каждой точке к направлению перемещения жидкости, вследствие чего работы не совершают. От­лична от нуля лишь работа сил давления, приложенных к сечениям S1 и S2. Эта работа равна (см. рис. 40.1).



Полная энергия рассматриваемого объема жидко­сти слагается из кинетической энергии и потенциалальной энергии в поле сил земного тяготения. Вслед­ствие стационарности течения полная энергия той части жидкости, кото­рая ограничена сече­ниями 1’ и 2 (внутрен­няя незаштрихованная часть трубки тока на рис. 40.1), за время Δt не изменяется. Поэто­му приращение полной энергии равно разности значений полной энер­гии заштрихованных объемов ΔV2 и ΔV1, масса которых Δm = рΔV (р — плотность жидкости).

Возьмем сечение S трубки тока и перемещения  Δl настолько малыми, чтобы всем точкам  каждого из заштрихованных объёмов можно было приписать одно и то же значение скорости v , давления p, и высоты h. Тогда дли приращения полной энергии получается выражение



Приравняв выражения (40.1) и (40.2), сократив на AV и перенеся члены с одинаковыми индексами в' одну часть равенства, придем к уравнению



Это уравнение становится вполне строгим лишь при стремлении поперечного сечения S к нулю, т. е. при стягивании трубки тока в линию. Следовательно, ве­личины и, h и р в обеих частях равенства нужно рассматривать как относящиеся к двум произвольным точкам одной и той же линии тока.

При выводе формулы (40.3) сечения S1 и S2 были взяты совершенно произвольно. Поэтому можно утверждать, что в стационарно текущей несжимаемой и идеальной жидкости вдоль любой линии тока вы­полняется условие


Уравнение (40.3) или равнозначное ему уравнение (40.4)    называется    уравнением    Бернулли. Хотя  это  уравнение   было   получено  для   идеальной жидкости,   оно   хорошо   выполняется   для  реальных жидкостей, у которых внутреннее трение невелико.


3. Истечение жидкости из отверстия

Рассмотрим    истечение   идеальной    несжимаемой  жидкости из небольшого отверстия в широком откры­том сосуде  (рис. 41.1). Выделим мысленно в жидко­сти трубку тока, сечениями ко­торой  являются  открытая   по­верхность жидкости S1 и сече­ние струи при выходе из отвер­стия S2 (если не принять спе­циальных    мер,    то    сечение струи    будет    меньше    отвер­стия). Для всех точек каждого из этих сечений скорость жид­кости v и высоту h над некото­рым исходным уровнем можно считать одинаковыми. Поэтому  к    данным    сечениям    можно применить   теорему Бернулли. Давления р1 и р2 в обоих сечениях одинаковы и равны атмосферному. Скоростью v1 пе­ремещения   открытой   поверх­ности жидкости ввиду ее малости можно пренебречь. Поэтому   уравнение   (40.3)   в   данном случае упро­щается следующим образом:



Рис.41.1.


где v — скорость жидкости в сечении S2 (скорость истечения из отверстия). Сократив на р, можно на­писать, что где h = h1 — h2 — высота открытой поверхности над отверстием.


Формула (41.1) называется формулой Торричелли. Из нее следует, что скорость истечения жидкости из отверстия, находящегося на глубине h под открытой поверхностью жидкости, совпадет со скоростью, которую приобретает любое тело, падая с высоты h (в случае, если сопротивлением воздуха можно пренебречь). Этот результат получен в пред­положении, что жидкость идеальна. Для реальных жидкостей скорость истечения будет меньше, причем тем сильнее отличается от значения, определяемого формулой Торричелли, чем больше внутреннее трение в жидкости. Например, глицерин будет вытекать из сосуда медленнее, чем вода.

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать