Механика жидкостей и газов в законах и уравнениях
ГОУ ВПО
ОМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ
УНИВЕРСИТЕТ
Реферат на тему:
МЕХАНИКА ЖИДКОСТЕЙ и газов
Выполнил:
Студент гр. МС-116
Оконешников А.В.
Проверил:
Шевченко С.С.
Омск - 2007
1. МЕХАНИКА ЖИДКОСТЕЙ
Совокупность векторов v(t), заданных для всех точек пространства, называется полем вектора скорости. Это поле можно наглядно изобразить с помощью линий тока (рис. 39.1). Линию тока
|
|
||||
можно провести через любую точку пространства. Если построить все мыслимые линии тока, они просто сольются друг с другом. Поэтому для наглядного представления течения жидкости строят лишь часть линий, выбирая их так, чтобы густота линий тока была численно равна модулю скорости в данном месте. Тогда по картине линий тока можно судить не только о направлении, но и о модуле вектора v в разных точках пространства. Например, в точке А на рис.39.1 густота линий, а следовательно и модуль v, чем в точке В. Поскольку разные частицы жидкости могут проходить через данную точку пространства с разными скоростями (т. е. v = v(t)), картина линий тока, вообще говоря, все время изменяется. Если скорость в каждой точке пространства остается постоянной (V=const), то течение жидкости Называется стационарным (установившимся). При стационарном течении любая частица жидкости проходит через данную точку пространства с одной и той же скоростью v. Картина линий тока при стационарном течении остается неизменной, и линии тока в этом случае совпадают с траекториями частиц. Если через все точки небольшого замкнутого контуpa провести линии тока, образуется поверхность, которую называют трубкой тока. Вектор v касателен к поверхности трубки тока в каждой ее точке. Следовательно, частицы жидкости при своем движении не пересекают стенок трубки тока.
Возьмем трубку тока, достаточно тонкую для того, чтобы во всех точках ее поперечного сечения S скорость частиц v была одна и та же (рис. 39.2). При стационарном течении трубка тока подобна стенкам жесткой трубы. Поэтому через сечение 5 пройдет за время Δt объем жидкости, равный SvΔt, а в единицу времени объем
(39.1)
Жидкость, плотность которой всюду одинакова и изменяться не может, называется несжимаемой. На рис. 39.3 изображены два сечения очень тонкой трубки тока — S1 и S2. Если жидкость несжимаема , то кол – во ее между этими сечениями остается неизменным. Отсюда следует, что
|
||||
|
||||
объемы жидкости, протекающие в единицу времени через сечения S1 и S2, должны быть одинаковыми:
(39.2)
(напомним, что через боковую поверхность трубки тока частицы жидкости не проникают).
Равенство (39.2) справедливо для любой пары произвольно взятых сечений. Следовательно, для несжимаемой жидкости при стационарном течении произведение Sv в любом сечении данной трубки тока имеет одинаковое значение:
(39.3)
Это утверждение носит название теоремы о неразрывности струи.
Мы получили формулу (39.3) для несжимаемой жидкости. Однако она применима к реальным жидкостям и даже к газам в том случае, когда их сжимаемостью можно пренебречь. Расчеты показывают, что при движении газов со скоростями, много меньшими скорости звука в этой среде, их можно с достаточной точностью считать несжимаемыми.
Из соотношения (39.3) вытекает, что при изменяющемся сечении трубки тока частицы несжимаемой жидкости движутся с ускорением (рис. 39.4). Если трубка тока горизонтальна, это ускорение может быть обусловлено только непостоянством давления вдоль трубки — в местах, где скорость больше, давление должно быть меньше, и наоборот. Аналитическую связь между скоростью течения и давлением мы установим в следующем параграфе.
2. Уравнение Бернулли
В реальных жидкостях при перемещении слоев жидкости друг относительно друга возникают силы внутреннего трения, тормозящие относительное смещение слоев. Воображаемая жидкость, у которой внутреннее трение полностью отсутствует, называется идеальной. Течение идеальной жидкости не сопровождается диссипацией энергии (см. предпоследний абзац § 24).
Рассмотрим стационарное течение несжимаемой идеальной жидкости. Выделим объем жидкости, ограниченный стенками узкой трубки тока и перпендикулярными к линиям тока сечениями S1 и S2 (рис. 40.1), За время А/ этот объем сместится вдоль трубки тока, причем граница объема S1 получит перемещение Δl2 , а граница S2 — перемещение Δl2. Работа, совершаемая при этом силами давления, раина приращению полной энергии (Ek + Ep), заключенной в рассматриваемом объеме жидкости.
Силы давления на стенки трубки тока перпендикулярны в каждой точке к направлению перемещения жидкости, вследствие чего работы не совершают. Отлична от нуля лишь работа сил давления, приложенных к сечениям S1 и S2. Эта работа равна (см. рис. 40.1).
Полная энергия рассматриваемого объема жидкости слагается из кинетической энергии и потенциалальной энергии в поле сил земного тяготения. Вследствие стационарности течения полная энергия той части жидкости, которая ограничена сечениями 1’ и 2 (внутренняя незаштрихованная часть трубки тока на рис. 40.1), за время Δt не изменяется. Поэтому приращение полной энергии равно разности значений полной энергии заштрихованных объемов ΔV2 и ΔV1, масса которых Δm = рΔV (р — плотность жидкости).
Возьмем сечение S трубки тока и перемещения Δl настолько малыми, чтобы всем точкам каждого из заштрихованных объёмов можно было приписать одно и то же значение скорости v , давления p, и высоты h. Тогда дли приращения полной энергии получается выражение
Приравняв выражения (40.1) и (40.2), сократив на AV и перенеся члены с одинаковыми индексами в' одну часть равенства, придем к уравнению
Это уравнение становится вполне строгим лишь при стремлении поперечного сечения S к нулю, т. е. при стягивании трубки тока в линию. Следовательно, величины и, h и р в обеих частях равенства нужно рассматривать как относящиеся к двум произвольным точкам одной и той же линии тока.
При выводе формулы (40.3) сечения S1 и S2 были взяты совершенно произвольно. Поэтому можно утверждать, что в стационарно текущей несжимаемой и идеальной жидкости вдоль любой линии тока выполняется условие
Уравнение (40.3) или равнозначное ему уравнение (40.4) называется уравнением Бернулли. Хотя это уравнение было получено для идеальной жидкости, оно хорошо выполняется для реальных жидкостей, у которых внутреннее трение невелико.
3. Истечение жидкости из отверстия
Рассмотрим истечение идеальной несжимаемой жидкости из небольшого отверстия в широком открытом сосуде (рис. 41.1). Выделим мысленно в жидкости трубку тока, сечениями которой являются открытая поверхность жидкости S1 и сечение струи при выходе из отверстия S2 (если не принять специальных мер, то сечение струи будет меньше отверстия). Для всех точек каждого из этих сечений скорость жидкости v и высоту h над некоторым исходным уровнем можно считать одинаковыми. Поэтому к данным сечениям можно применить теорему Бернулли. Давления р1 и р2 в обоих сечениях одинаковы и равны атмосферному. Скоростью v1 перемещения открытой поверхности жидкости ввиду ее малости можно пренебречь. Поэтому уравнение (40.3) в данном случае упрощается следующим образом:
Рис.41.1.
где v — скорость жидкости в сечении S2 (скорость истечения из отверстия). Сократив на р, можно написать, что где h = h1 — h2 — высота открытой поверхности над отверстием.
Формула (41.1) называется формулой Торричелли. Из нее следует, что скорость истечения жидкости из отверстия, находящегося на глубине h под открытой поверхностью жидкости, совпадет со скоростью, которую приобретает любое тело, падая с высоты h (в случае, если сопротивлением воздуха можно пренебречь). Этот результат получен в предположении, что жидкость идеальна. Для реальных жидкостей скорость истечения будет меньше, причем тем сильнее отличается от значения, определяемого формулой Торричелли, чем больше внутреннее трение в жидкости. Например, глицерин будет вытекать из сосуда медленнее, чем вода.
Страницы: 1, 2