Моделирование в физике элементарных частиц
МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ РЕСПУБЛИКИ КАЗАХСТАН
СЕМИПАЛАТИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ШАКАРИМА
КАФЕДРА ОБЩЕЙ ФИЗИКИ
Тема: «Моделирование в физике элементарных частиц»
Семипалатинск 2004
Содержание
Введение
3
1. Математическое моделирование в физике
5
2. Историческое развитие теории моделирования элементарных частиц
11
2.1 Три этапа в развитии физики элементарных частиц
-
2.2 Первые модели элементарных частиц
13
2.3 Элементарные частицы и фундаментальные взаимодействия.
20
2.4 Современная модель нейтрона
23
2.5 Электрический дипольный момент элементарных частиц
31
3. Кварковая модель элементарных частиц
36
3.1 Существование кварков
-
3.2 Кварковая модель адронов
40
4. Практическая часть
47
4.1 Методика изучения темы «Элементарные частицы»
48
50
52
57
58
Заключение
60
Список используемой литературы
63
Приложения
64
Введение
Информация об элементарных частицах растет день ото дня: сегодня об них известно чрезвычайно много. Однако до сих пор усилия по созданию единой модели этих частиц, позволяющей объяснить все явления, остаются тщетными. Все огромные усилия в этом направлении приводили только к созданию различных моделей, более или менее успешно объясняющих лишь ту или иную группу явлений. И это не должно нас удивлять. Мы знаем, что любая модель в состоянии охватить лишь часть действительности. Мы уже давно убедились в том, что к объектам, размеры которых равны либо меньше длины волны света, давно привычные понятия не применимы. Мир элементарных частиц окружен еще более высоким барьером, чем тот, что стоял перед нами при проникновении в электронную оболочку атома. В этом новом мире все попытки описать явления с помощью наивных наглядных представлений тщетны. «Немыслимым становится реальным событием» - это напоминание призывает нас к особой осторожности.
Современная физика элементарных частиц – это грандиозная наука, где триумфы следуют друг за другом, часто неся взрывной характер, и представляют собой необходимые закономерные фазы беспредельного во времени и пространстве процесса эволюции материи. Всё это необходимо знать современному человеку и понимать, что новые воззрения на строение атома и элементарные частицы явились, прежде всего, результатом блестящего каскада «диковинных» открытий, а сами открытия стали возможны благодаря научно-техническому прогрессу, благодаря оснащению новыми приборами и новыми методами исследования.
В данной работе я попытаюсь ответить на вопрос: Как устроены элементарные частицы? Какие модели элементарных частиц предлагали и выдвигают ученные сегодня?
Совсем недавно в школьных учебниках на уровне молекул и атомов появилось понятие "валентность"; на уровне ядер - понятие дефекта массы, которое позволило рассматривать легкие (даже без массы) объекты построенными из более тяжелых частиц. Дефект масс для ядер сказывается в том, что масса ядер меньше массы нуклонов (нейтронов и протонов) в ядрах, что обусловливает их связь.
В науке на уровне элементарных частиц утвердилось понятие виртуальной частицы, то есть частицы, существующей очень короткое время ~h/m и отлетающей от испускающей ее частицы на расстояние h/p, где m и p - масса и импульс виртуальных частиц. Понятие виртуальной частицы нетривиально. Есть вопрос о правомерности применения к ней слова "существующей". Может быть, это лишь след математического описания? Представление о виртуальной частице как реальности противоречит законам сохранения энергии и импульса. К примеру, когда говорят, что нуклон окружен "шубой" пионов или нуклоны взаимодействуют, обмениваясь пионами, говорят о виртуальных пионах. Существуют ли они? Сегодня можно смело ответить: да. Но на малые промежутки времени и на малых расстояниях. Виртуальные частицы могут - реализоваться, если передать им энергию так, чтобы их образование не противоречило закону сохранения импульса и энергии. Осознание этой возможности приводит к ярким картинам, например движущееся тело с энергией, соответствующей нескольким ГэВ/нуклон, "выворачивает" из вакуума вдоль своей траектории куски вещества и антивещества.
Уже сегодня быстрые протоны образуют пары дейтрон-антидейтрон, гелий-антигелий. Сам вакуум непрерывно кипит, порождая самые разнообразные виртуальные частицы.
На уровне кварков мы встретились с новым, неожиданным и пока до конца непонятым явлением - конфайментом, невылетанием кварков. Кварки, как мы увидим, частицы с дробным электрическим и барионным зарядами и новым квантовым числом - цветом, не могут быть в свободном состоянии, они замкнуты в области порядка размера элементарных частиц. В ряде моделей считается, что кварки "живут" в пузырьках в вакууме и удерживаются поверхностным давлением этих пузырьков.
Уже создана теория, так называемая квантовая хромодинамика, которая описывает поведение кварковых систем в вакууме.
Квантовохромодинамические расчеты на качественном уровне, а для
некоторых случаев (например, водородоподобных систем из двух тяжелых кварков)
на точном количественном уровне описывают экспериментальные данные.
Понятия о кварках и их свойствах, конечно, непросты и непривычны. Это
мировоззренческое достижение современной физики, и потому оно с неизбежностью
должно войти в школьные учебники.
1. Математическое моделирование в физике
Понятие модели
Нас окружают сложные технические системы. В процессе проектирования новой или модернизации существующей технической системы решаются задачи расчета параметров и исследования процессов в этой системе. При проведении многовариантных расчетов реальную систему заменяют моделью.
Модель – это материальный или мысленно представленный объект, который в процессе познания (изучения) замещает оригинал, сохраняя некоторые важные для данного исследования типичные свойства.
В широком смысле модель определяют как отражение наиболее существенных свойств объекта.
Математическая модель технического объекта - совокупность математических объектов и отношений между ними, которая адекватно отражает свойства исследуемого объекта, интересующие исследователя.
Хорошо построенная модель доступнее для исследования – нежели реальный объект. Например, недопустимы эксперименты с элементарными частицами для школьников страны в познавательных целях, здесь без модели не обойтись.
Модель может быть представлена различными способами.
инвариантная - запись соотношений модели с помощью традиционного математического языка безотносительно к методу решения уравнений модели;
аналитическая - запись модели в виде результата аналитического решения исходных уравнений модели;
алгоритмическая - запись соотношений модели и выбранного численного метода решения в форме алгоритма.
схемная (графическая) - представление модели на некотором графическом языке (например, язык графов, эквивалентные схемы, диаграммы и т.п.);
физическая
аналоговая
Наиболее универсальным является математическое описание процессов - математическое моделирование.
В понятие математического моделирования включают и процесс решения задачи на ЭВМ.
Обобщенная математическая модель
Математическая модель описывает зависимость между исходными данными и искомыми величинами. Элементами обобщенной математической модели являются (рис. 1):
множество входных
данных (переменные) X,Y;
X - совокупность варьируемых переменных; Y - независимые переменные
(константы);
математический оператор L, определяющий операции над этими данными; под которым понимается полная система математических операций, описывающих численные или логические соотношения между множествами входных и выходных данных (переменные);
множество выходных данных (переменных) G(X,Y); представляет собой совокупность критериальных функций, включающую (при необходимости) целевую функцию.
Рис. 1.
Математическая модель является математическим аналогом проектируемого объекта. Степень адекватности ее объекту определяется постановкой и корректностью решений задачи проектирования. Множество варьируемых параметров (переменных) X образует пространство варьируемых параметров Rx (пространство поиска), которое является метрическим с размерностью n, равной числу варьируемых параметров. Множество независимых переменных Y образуют метрическое пространство входных данных Ry. В том случае, когда каждый компонент пространства Ry задается диапазоном возможных значений, множество независимых переменных отображается некоторым ограниченным подпространством пространства Ry. Множество независимых переменных Y определяет среду функционирования объекта, т.е. внешние условия, в которых будет работать проектируемый объект.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10