Большинство работ Кавендиша в области теплоты и электричества были опубликованы лишь через много лет после его смерти (труды по электричеству – в 1879 г. Джеймсом Максвеллом, собрание трудов – в 1921 г.). Кавендиш ввёл в науку понятие электрического потенциала, исследовал зависимость ёмкости электрического конденсатора от среды, изучал взаимодействие электрических зарядов, предвосхитив закон Ш. Кулона. Он впервые сформулировал понятие теплоёмкости. В 1790 г. Кавендиш сконструировал крутильные весы и измерил с их помощью силу притяжения двух сфер, подтвердив закон всемирного тяготения, а также определил гравитационную постоянную, массу и среднюю плотность Земли. Именем Кавендиша названа организованная Максвеллом в 1874 г. физическая лаборатория в Кембриджском университете.
Опыт Г.Кавендиша
Установление Ньютоном закона всемирного тяготения явилось важнейшим событием в истории физики. Его значение определяется прежде всего универсальностью гравитационного взаимодействия. На законе всемирного тяготения основывается один из центральных разделов астрономии — небесная механика. Мы ощущаем силу притяжения к Земле, однако притяжение малых тел друг к другу неощутимо. Требовалось экспериментально доказать справедливость закона всемирного тяготения и для обычных тел. Именно это и сделал Г.Кавендиш, попутно определив среднюю плотность Земли.
где m1 и m2 — массы материальных точек, R — расстояние между ними, a F — сила взаимодействия между ними. До начала XIX века G в закон всемирного тяготения не вводилось, так как для всех расчетов в небесной механике достаточно использовать постоянные GM, имеющие кинематическую размерность. Постоянная G появилась впервые, по-видимому, только после унификации единиц и перехода к единой метрической системе мер в конце XVIII века. Численное значение G можно вычислить через среднюю плотность Земли, которую нужно было определить экспериментально. Очевидно, что при известных значениях плотности ρ и радиуса R Земли, а также ускорения свободного падения g на её поверхности можно найти G:
Первоначально эксперимент был предложен Джоном Мичеллом. Именно он сконструировал главную деталь в экспериментальной установке — крутильные весы, однако умер в 1793 так и не поставив опыта. После его смерти экспериментальная установка перешла к Генри Кавендишу. Кавендиш модифицировал установку, провёл опыты и описал их в Philosophical Transactions в 1798.
Установка
Крутильные весы
Установка представляет собой деревянное коромысло с прикреплёнными к его концам небольшими свинцовыми шарами. Оно подвешено на нити из посеребрённой меди длиной 1 м. К шарам подносят шары большего размера массой 159 кг, сделанные также из свинца. В результате действия гравитационных сил коромысло закручивается на некий угол. Жёсткость нити была такой, что коромысло делало одно колебание за 15 минут. Угол поворота коромысла определялся с помощью луча света, пущенного на зеркальце на коромысле, и отражённого в микроскоп. Зная упругие свойства нити, а также угол поворота коромысла, можно вычислить гравитационную постоянную.
Для предотвращения конвекционных потоков установка была заключена в ветрозащитную камеру. Угол отклонения измерялся при помощи телескопа.
Списав закручивание нити на магнитное взаимодейстивие железного стержня и свинцовых шаров, Кавендиш заменил его медным, получив те же результаты.
Вычисленное значение
В «Британнике» утверждается, что Г. Кавендиш получил значение G=6,754·10-11 м³/(кг·с³)[1]. Это же утверждают Е. P. Коэн, К. Кроув и Дж. Дюмонд[2] и А. Кук. [3].
Л. Купер в своём двухтомном учебнике физики приводит другое значение: G=6.71·10-11м³/(кг·с³)[4].
О. П. Спиридонов — третье: G=(6.6 ± 0.04)·10-11м³/(кг·с³)[5].
Однако в классической работе Кавендиша не было приведено никакого значения G. Он рассчитал лишь значение средней плотности Земли: 5.48 плотностей воды[6] (современное значение 5,52 г/см³). Вывод Кавендиша о том, что средняя плотность планеты 5,48 г/см³ больше поверхностной ~2 г/см³, подтвердил, что в глубинах сосредоточены тяжёлые вещества.
Гравитационная постоянная была впервые введена, по-видимому, впервые только С. Д. Пуассоном в «Трактате по механике» (1811)[7]. Значение G было вычислено позже другими учеными из данных опыта Кавендиша. Кто впервые рассчитал численное значение G, историкам неизвестно.
Практическая часть
Применение баллистики на практики
Представим себе, что изодной точки выпустили несколько снарядов, под различными углами. Например, первый снаряд под углом 30°, второй под углом 40°, третий под углом 60°,а четвертый под углом 75°(рис № 6).
(рис№6) 1)На рисунке №6 зеленым цветом изображен график снаряда выпущенного под углом 30°, белым под углом 45°, фиолетовым под углом 60°, а красным под углом 75°. А теперь посмотрим на графики полёта снарядов и сравним их.(начальная скорость одинакова, и равна 20 км/ч)
Сравнивая эти графики можно вывести некоторую закономерность: с увеличением угла вылета снаряда, при одинаковой начальной скорости, дальность полёта уменьшается, а высота увеличивается.
2)Теперь рассмотрим другой случай, связанный с различной начальной скоростью, при одинаковом угле вылета. На рисунке №7 зеленым цветом изображен график снаряда выпущенного с начальной скоростью 18 км/ч, белым со скоростью 20 км/ч, фиолетовым со скоростью 22 км/ч, а красным со скоростью 25 км/ч. А теперь посмотрим на графики полёта снарядов и сравним их (угол полёта одинаков и равен 30°). Сравнивая эти графики можно вывести некоторую закономерность: с увеличением начальной скорости вылета снаряда, при одинаковом угле вылета, дальность и высота полёта снаряда увеличиваются.
(рис№7)
Вывод: с увеличением угла вылета снаряда, при одинаковой начальной скорости, дальность полёта уменьшается, а высота увеличивается, а с увеличением начальной скорости вылета снаряда, при одинаковом угле вылета, дальность и высота полёта снаряда увеличиваются.
Применение теоретических расчётов к управлению баллистическими ракетами
А) траектория баллистической ракеты.
Наиболее существенной чертой, отличающей баллистические ракеты от ракет других классов, является характер их траектории. Траектория баллистической ракеты состоит из двух участков – активного и пассивного. На активном участке ракета движется с ускорением под действием силы тяги двигателей.
При этом ракета запасает кинетическую энергию. В конце активного участка траектории, когда ракета приобретёт скорость, имеющую заданную величину
и направление, двигательная установка выключается. После этого головная часть ракеты отделяется от её корпуса и дальше летит за счёт запасённой кинетической энергии. Второй участок траектории (после выключения двигателя) называют участком свободного полёта ракеты, или пассивным участком траектории. Ниже для краткости будем обычно говорить о траектории свободного полёта ракеты, подразумевая при этом траекторию не всей ракеты, а только её головной части.
Баллистические ракеты стартуют с пусковых установок вертикально вверх. Вертикальный пуск позволяет построить наиболее простые пусковые установки и обеспечивает благоприятные условия управления ракетой сразу же после старта. Кроме того, вертикальный пуск позволяет снизить требования к жёсткости корпуса ракеты и, следовательно, уменьшить вес её конструкции.
Управление ракетой осуществляется так, что через несколько секунд после старта она, продолжая подъём вверх, начинает постепенно наклоняться в сторону цели, описывая в пространстве дугу. Угол между продольной осью ракеты и горизонтом (угол тангажа) изменяется при этом на 90º до расчетного конечного значения. Требуемый закон изменения (программа) угла тангажа задается программным механизмом, входящим в бортовую аппаратуру ракеты. На завершающем отрезке активного участка траектории угол тангажа выдерживается, постоянны и ракета летитпрямолинейно, а когда скорость достигает расчетной величины - двигательную установку выключают. Кроме величины скорости, на завершающем отрезке активного участка траектории устанавливают с высокой степенью точности также и заданное направление полёта ракеты (направление вектора её скорости). Скорость движения в конце активного участка траектории достигает значительных величин, но ракета набирает эту скорость постепенно. Пока ракета находится в плотных слоях атмосферы, скорость её мала, что позволяет снизить потери энергии на преодоление сопротивления среды.