2. Волновая концепция света О.Френеля
Сформировавшиеся в предшествующее столетие корпускулярная и волновая концепция света в XIX веке продолжили ожесточенную борьбу. Первая опиралась на авторитет Ньютона, вторая - на авторитет Гука, Гюйгенса, Эйлера, Ломоносова. Сторонники корпускулярной концепции надеялись объяснить с ее позиций затруднения с объяснением явлений дифракции и интерференции. Т.Юнг дал это объяснение с позиций волновой концепции. Исходя из высказанных им гипотез о существовании разреженного и упругого светоносного эфира, заполняющего Вселенную, о возбуждении волнообразных движений в эфире при свечении тела, о зависимости ощущения различных цветов от различной частоты колебаний, возбуждаемых светом на сетчатке глаза, о притягивании всеми материальными телами эфирной среды, вследствие чего последняя накапливается в веществе этих тел и на малом расстоянии вокруг них в состоянии большей плотности (но не большей упругости), Юнг делает вывод о том, что излучаемый свет состоит из волнообразных движений светоносного эфира. Это дало возможность все разнообразие цветов свести к колебательным движениям эфира, а различие цветов объяснить различием частот колебаний эфира, а также сформулировать принцип интерференции.
Прямолинейное распространение света было наиболее важным аргументом в пользу корпускулярной теории. О.Френель делает новый существенный шаг в развитии волновой теории. (Идея интерференции вообще оказалась столь плодотворной, что при встрече с неизвестным видом излучения всегда стараются получить интерференцию. И если это удается, то тем самым доказывается его волновой характер.)[11]
Связав принцип Гюйгенса, (согласно которому молекулы тела, приведенные в колебание падающим светом становятся центрами испускания новых волн) с принципом интерференции, (согласно которому налагающиеся волны, в противоположность корпускулярным лучам, не обязательно усиливаются, а могут и ослабляться до полного уничтожения), Френель дал объяснение прямолинейному распространению света, показав, что лучи, поляризованные перпендикулярно друг к другу, не интерферируются. В опытах по дифракции света он установил. что дифракционные полосы появляются вследствие интерференции лучей. Принцип интерференции позволил Френелю законы отражения и преломления объяснить взаимным погашением световых колебаний во всех направлениях, за исключением тех. которые удовлетворяют закону отражения. Френелю удалось экспериментально доказать, что световые лучи могут воздействовать друг на друга, ослабляться и даже почти полностью погашаться в случаях согласных колебаний, что и позволило ему дать объяснение явлению дифракции. Френель доказал. что свет является поперечным волновым движением. Он объяснил явление поляризации света в экспериментальных исследованиях отражения и преломления света от поверхности прозрачных веществ. Им было установлено, что отражение плоско-поляризованного света от поверхности прозрачного тела сопровождается поворотом плоскости поляризации в тех случаях, когда эта плоскость не совпадает с плоскостью падения или не перпендикулярна к ней. Развивая идеи Гюйгенса о распространении волн в кристаллах. Френель заложил основы кристаллооптики.
Таким образом, борьба волновой и корпускулярной концепции света в первой половине XIX века завершается победой волновой концепции - было установлено, что свет является поперечным волновым движением. Решающим вкладом в эту победу и явилось объяснение с помощью волновой концепции явлений дифракции и интерференции света.
3. Концепции классической электродинамики
Классическая электродинамика, представляющая собой теорию электромагнитных процессов в различных средах и вакууме, охватывает огромную совокупность явлений, в которых главная роль принадлежит взаимодействиям между заряженными частицами, которые осуществляются посредством электромагнитного поля. Разделом электродинамики, изучающим взаимодействия и электрические поля покоящихся электрических зарядов, является электростатика.
Успехи в области электростатики, выразившиеся в установлении количественного закона электрических взаимодействий, способствовали не только накоплению экспериментальных данных в области электростатических явлений и совершенствованию электростатических машин, но и созданию математической теории электро- и магнитостатистических взаимодействий. Открытие Л.Гальвани "животного электричества", создание А.Вольта первого генератора электрического тока ("вольтова столба"), осуществление первого описания замкнутой цепи электрического тока, открытие В.В.Петровым электрической дуги, открытие Г.Дэви и М.Фарадея химического действия электрического тока, теоретические работы по электро- и магнитостатике С.Пуассона и Д.Грина были завершающими успехами в области концепции электрической жидкости, считавшейся в начале XIX века основой электростатики, подобно тому, как концепция магнитной жидкости считалась основой магнитостатики. В дальнейшем главным направлением в данной области становится электромагнитизм.
В 1820 г. Х.Эрстедом было открыто магнитное действие электрического тока - вокруг проволоки с электрическим током было обнаружено магнитное поле. Таким образом, была доказана связь электричества и магнетизма. А.Ампер, основываясь на единстве электрических и магнитных явлений, разработал первую теорию магнетизма, заложив тем самым основы электродинамики. Он различал понятия электрического тока и электрического напряжения. Основными понятиями его концепции были "электрический ток", "электрическая цепь". Под электрическим током Ампер понимал непрестанно чередующиеся внутри проводника процессы соединения и разделения противоположно заряженных частиц электричества. (Наименование единицы силы тока носит имя Ампера.) Им обосновано направление движения тока - направление положительного заряда электричества, а также установлен закон механического взаимодействия двух токов, текущих в малых отрезках проводников, находящихся на некотором расстоянии друг от друга. Из данного закона следовало. что параллельные проводники с токами, текущими в одном направлении, притягиваются, а в противоположных направлениях - отталкиваются. Из представления о магните как совокупности электрических токов, расположенных в плоскостях, перпендикулярных линии, соединяющей полюсы магнита, вытекал естественный вывод о том, что соленоид эквивалентен магниту. Революционный смысл этого вывода был очевиден: для объяснения явления магнетизма больше не требовалось наличия "магнитной жидкости" - все явление магнетизма оказалось возможным свести к электродинамическим взаимодействиям.
Следующим шагом в развитии электродинамики было открытие М.Фарадеем явления электромагнитной индукции - возбуждения переменным магнитным полем электродвижущей силы в проводниках, - ставшей основой электротехники. Важным результатом его исследований явилось также обоснование того, что отдельные виды электричества тождественны по своей природе, независимо от их источника. Открытие закона электролиза(химическое действие электрического тока прямо пропорционально количеству проходящего электричества), открытие вращения плоскости поляризации света в магнитном поле. Пытаясь объяснить явление электромагнитной индукции на основе концепции дальнодействия, но встретившись с затруднениями, он высказал предположение об осуществлении электромагнитных взаимодействий по средством электромагнитного поля, т.е. на основе концепции близкодействия. Это положило начало формированию концепции электромагнитного поля, оформленную Д.Максвеллом.
4. Электромагнитное поле Максвелла и эфир
Теория Ньютона успешно объяснила движение планет вокруг Солнца под влиянием силы притяжения, но не смогла верно объяснить движение электрически заряженных частиц, которые взаимодействуют друг с другом через пустое пространство под влиянием электрических и магнитных сил - модель атома напоминает модель Солнечной системы (в центре атома находится положительно заряженное ядро, вокруг которого вращаются электроны). Вместе с тем между гравитационными и электромагнитными силами есть различия: электрический заряд имеет лишь некоторые частицы, а гравитацией обладают все формы вещества и энергии; электрические силы бывают положительными и отрицательными (причем частицы с разным зарядом притягиваются, а с одинаковым - отталкиваются), а тяготеющие объекты только притягиваются; при малых масштабах (например, в атоме) резко преобладают электромагнитные силы, а при больших масштабах (например, при масштабах Земли) - гравитационные. Д.К.Максвелл вывел систему уравнений, описывающих взаимосвязь движения заряженных частиц и поведение электромагнитных сил. Центральным понятием теории Максвелла было понятие поля, которое избавило от затруднений. связанных с ньютоновским действием на расстоянии. В XIX в. поле описывалось по аналогии с движущейся жидкостью, поэтому оно характеризовалось с помощью таких терминов, как "магнитный поток", "силовые линии" и т.п. Описание же поля как жидкости предполагает среду, передающую действие от одного заряда к другому. Такую гипотетическую жидкость назвали эфиром. Полагали, что эфир заполняет все пустое пространство, оставаясь невидимым. Электромагнитные поля представлялись в виде натяжений в эфире. Заряженные частицы порождали в эфире волны натяжений. скорость распространения которых, как и показали расчеты, оказалась около 300000 км/с. Свет стал рассматриваться в виде электромагнитных волн, которые вызывались движениями заряженных частиц и которые распространялись в пространстве как колебания эфира. С открытием электромагнитных волн (радиоволны, сверхвысокочастотные. тепловые (инфракрасные), ультрафиолетовые, рентгеновские волны. гамма-излучения) появилась возможность проверки ньютоновской теории пространства и времени.
Если Фарадей осуществил новый подход к изучению электрических и магнитных явлений, создав концепцию поля. которое описвывалось с помощью силовых линий, то Максвелл. введя точное понятие электромагнитного поля. сформулировал его законы.
Из концепции Френеля о поперечных световых волн неизбежно вытекали вопросы о том, в какой же среде распространяются волны, почему нет продольных световых волн, как действует эфир на движущиеся в нем тела и т.д. Было высказано множество самых разнообразных гипотез относительно поперечности световых волн (например, гипотеза абсолютно несжимаемого эфира, гипотеза неподвижного эфира, гипотеза эфира, частично увлекаемого за собой движущимися в нем телами и т.д.). Т.е. существование самого эфира сомнению не подвергалось, ибо распространение волн требовало соответствующей среды.
Максвелл создает электромагнитную теорию света, установив уравнения, объяснявшие все известные к тому времени факты с единой точки зрения. В них устанавливалась связь между изменениями магнитного поля и возникновением электродвижущей силы. Свою главную задачу Максвелл усматривал в том, чтобы привести электрические явления к области динамики. Он исходил из того, что электрический ток нельзя рассматривать иначе как действия не расположения. а распространения протекающие во времени. Причина электрических токов была им названа электродвижущей силой.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24