Нейтринные осцилляции

                                  ( 1.12)

          Так как  не зависит от x, мы можем формально интегрировать уравнение движения. Получим:

                                     ( 1.13)

          Сделаем несколько упрощений. Во-первых, будем писать E вместо . Во-вторых, заметим, что если в  существуют слагаемые пропорциональные единичной матрице, то они дают общую фазу для решения. Более того, такие слагаемые не затрагивают угол смешивания, как это видно из уравнения (1.12). Так, как такие слагаемые не относятся к делу, ими можно пренебречь. Тогда получим, что:

                        ( 1.14)

                              ( 1.15)

Поэтому:

     ( 1.16)

          Вероятность обнаружить  и  в начальном  - луче:    

                  ( 1.17)

                                   ( 1.18)

          Заметим, что вероятность найти <1. Грибов и Понтекорво предположили, что это должно вести к истощению солнечных нейтрино.

          Используя равенство (1.18),чтобы представить результаты по солнечным нейтрино, нужно положить  - расстояние от Земли до Солнца. Если мы знаем , то можем вычислить вероятность жизни для нейтрино любой энергии Е. Поскольку любой эксперимент замеряет спектр энергии. Поэтому, чтобы получить вероятность жизни для всего луча, нужно интегрировать по этому спектру. Введём обозначение:

                           ( 1.19)

где  - усреднение по энергии. Для реального эксперимента выживание даётся:

                               ( 1.20)

Величена , конечно, различна для разных экспериментов.

1.2. Осцилляции нейтрино в сплошной среде

          В предыдущем разделе мы принимали, что нейтрино проходят через вакуум, который является хорошой апроксимацией пути между Солнцем и Землёй. Но нейтрино рождаются глубоко внутри Солнца, и сначала они должны пройти солнечную материю, перед тем как выйти наружу. Осцилляции в Солнце или в любой другой среде могут существенно отличатся от сцилляций нейтрино в вакууме. Основной причиной этого является то, что в среде видоизменяется дсперсионное соотношение частиц, проходящих через среду.

          Это явление хорошо известно для фотонов. Они безмассовы в вакууме, так что их дисперсионное отношение просто . В среде, однако, дисперсионное отношение более сложное, что может быть объяснено тем, что фотон приобретает эффективную массу. Из-за этого, он не распространяется в среде со скоростью .

          Солнечная среда неоднородна. Рассмотрим прохождения нейтринного пучка через однородную среду.

          Чтобы это решить [1], мы примем нейтрино рассеивающимися материей. Солнечная материя состоит из электронов, протонов и нейтронов. Конечно, электронное нейтрино взаимодействует только с электроном. Мюонное нейтрино, может взаимодействовать только с мюонами, но температура  солнечного ядра недостаточно высокая, чтобы удовлетворять этим условиям. Поэтому, нужно учитывать вклад только для . Феймановская диаграма этого процесса дана на рис. 2.

Рисунок 2.


          Если учесть зарядовые и нейтральные токовые вклады, то получим следующий гамильтониан:

                                                                                              ( 1.21)

где   

                            ( 1.22)

                                    ( 1.23)

где  и  - концентрация электронов и нейтронов соответственно.

          Значение этих слагаемых понятно, если мы напишем уравнение Дирака:

                              ( 1.24)

Перепишем его как:

                               ( 1.25)

Возводя в квадрат обе части, в итоге получим:

                                 ( 1.26)

Таким образом, V добавляется к энергии. В этом смысле V может быть названо потенциальной энергией. Поэтому, мы её представили со знаком минус в уравнении эффективного лагранжиана.

Эволюционное уравнение в материи тогда даётся:

                                  ( 1.27)

где Гамильтониан даётся как:

                         ( 1.28)

где  - вакуумная часть, данная (1.11). Так

                           ( 1.29)

где , как и выше, обозначения для амплитуды 3-импульса нейтринного пучка и

                     ( 1.30)

                                     ( 1.31)

Эффективный угол смешивания в материи будет даваться следующим образом:

                       ( 1.32)

и стационарные состояния:

                            ( 1.33)

                           ( 1.34)

          Отметим интересную особенность основного состояния. Для примера рассмотрим малый вакуумный угол смешивания. Тогда для , , поэтому . С другой стороны для ,  и поэтому . Другими словами, основное состояние почти чистое  если плотность вещества мала, и почти чистое  если плотность вещества неограниченно возрастает.

          В 1985 году важную теоретическую работу, относящуюся к нейтринным осцилляциям, опубликовали С.П. Михеев и А.Ю. Смирнов. Они показали, что в веществе с плавно меняющейся плотностью (в частности, на Солнце) может в принципе, иметь место практически полный резонансный переход электронных нейтрино в мюонные или тауонные нейтрино. Этот эффект может возникать из-за того, что сечение рассеяния   на электронах отличается от сечений  или . В результате при некоторой плотности вещества может произойти пересечение уровней и  (или  и ) и, как следствие, интенсивное превращение  в  (или ). Это превращение должно носить резогнансный характер, оно будет иметь место лишь для некоторого интервала нейтрино. Этот эффект называется Михеева-Смирнова-Вольфенстайна (МСВ) резонанс.


2. Указание на не нулевую нейтринную массу

2.1. Проблема солнечных нейтрино.

Солнце – огромный ядерный реактор, где протекают реакции синтеза из водорода гелия и далее более тяжелых элементов. В этих реакциях рождаются нейтрино. Основная цепочка реакций, протекающих в Солнце, может быть суммирована равенством:

                                     ( 2.1)

Это, конечно, не одна простая реакция, а имеется много шагов (таблица 1.). Энергия высвобождается главным образом в виде фотонов, которые претерпевают многократное рассеяние перед тем, как покинуть Солнце. Этот процесс ответственен за тепло и свет, которые мы получаем от Солнца. Однако небольшая часть энергии уносится нейтрино. Так как у нейтрино сечение взаимодействия с веществом крайне мало, то нейтрино легко выходят из Солнца. Таким образом, они несут важную информацию о Солнечном ядре.

Из (2.1) можно получить простую оценку для нейтринного потока  получаемого,  Землёй. Полная светимость Солнца . На каждые 25 Мэв выходящей энергии рождается две нейтрино. Таким образом, число рождаемых нейтрино в секунду будет . Деля это на , где D – это расстояние от Солнца до Земли равное , мы получим величину потока около . Большая часть этого потока формируется в pp цикле, где из двух протонов формируется дейтерий.

Таблица 1. даёт цепочки реакций, которые были суммированы в реакции (2.1). Имеются две параллельные реакции, называемые pp и pep циклами. Реакция pp ответственна за рождение большинства нейтрино в Солнце. Дейтерий быстро синтезируется в ядро  и далее два ядра  могут, с помощью сильного взаимодействия, преобразоваться в ядро . Однако, в редких случаях  слабо взаимодействует с протоном. В этом случае так же рождается нейтрино.


Реакции

      Имя реакции

 Энергия нейтрино в Мэв

     Поток

     1010 см-2с-1

                                                Стадия 1: синтез 2Н из р

            pр

         0.42

    6.0×(1±0.02)

            pер

          1.44

    0.014×(1±0.05)

                                               Стадия 2: синтез 2Н в 3Н                                             

           ----- 

           -----

       -----

                                               Стадия 3: пря мой синтез 4Не из 3Не

           -----

           -----

       -----

            Нер

        18.77

         8×10-7

                                               Стадия 4: синтез 7Ве

           -----

           -----

        -----

                                               Стадия 5: распад 7Ве в 4Не

           7Ве

         0.861

    0.47×(1±0.15)

           -----

          -----

         -----


            8В


       14.06


    5.8×10-4×(1±0.02)


Таблица 1. Реакции в рр цикле


После того, как создано некоторое количество ядер , возможен синтез более тяжёлых ядер, например . Поскольку ядра  очень стабильные, то  распадается на ядра  в несколько этапов, через ядра  или , как показано в таблице 1. Нейтрино из  имеют высокую энергию. Это было очень важно при проведении первых экспериментов по регистрации солнечных нейтрино. Конечно, Hep нейтрино имеют ещё большую энергию, но их поток настолько мал, что его можно не учитывать.

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать