Оценка технического состояния трансформаторных вводов на основе нечетких алгоритмов

- концентрация любого из газов Н2, С2Н2 и ∑СХНУ превышает в 2 и более раза значения, приведенные в табл. 3.5;

- величина tgδ3 превышает значения, приведенные в табл. 3.5 и значения tgδ3п при предыдущем измерении, при этом относительная скорость нарастания суммы горючих газов в месяц Vг превышает значений по табл. 3.2.

Эти условия в наглядном виде приведены в таблице 3.3. Отмечаем особый случай, когда tgδ1<0. При этом если tg1 превышает значения, приведенные в табл.4 то считают, что ввод подлежит отбраковке, а если tgδ3 меньше нормы по табл. 3.5 то необходимо убедиться в истинности результатов измерений. Для этого необходимо предпринять меры по исключению влияния погодных условий и загрязнения внешней изоляции.

Правило 3: Вводы с предполагаемым наличием дефекта, у которых значение контролируемых параметров отклоняются от нормы, требуют уточнения диагноза эксплуатационного состояния. Для этого необходимо увеличить объем испытаний, провести дополнительные измерения или повторный контроль при сокращенной периодичности. Правило формируется в виде "если ... то ...".

-если значение tgδ1 лежит в пределах величин, приведенных в табл. 3.5, а tgδ3 превышает указанное в табл. 3.5, но не более чем в 1.5 раза, а концентрации газов не превышают значений табл. 3.8, то необходимо произвести отбор пробы масла для измерения tgδм↑70C и tgδм↓70C измеренные при подъеме и спаде температуры, если эти тангенсы не превышают значений в табл. 3.7 и 3.5 соответственно, то допустима проведение повторного контроля через год;

-  если значение tgδ1 лежит в пределах величин, приведенных в табл. 3.5, а tgδ3 превышает указанное в табл. 3.5, но не более чем в 1.5 раза, а концентрация газов превышает значения по табл. 3.8, но не более граничных значений по табл. 3.5, а относительная скорость нарастания суммы горючих газов в месяц V1 < N (табл. 3.2) то допустимо проведение повторного контроля через 0.5 года;

-  если концентрации растворенных газов достигают граничных значений только за счет содержания Н2 и СH4, но не более удвоенного значения по табл. 3.5 и при этом АCO/АCO2 < 0.15, то допустимо проведение повторного контроля через 0.5 года;

-если установлено, что относительная скорость нарастания суммы горючих газов в месяц V∑ не превышает значений по таб. 3.2, а концентрация каждого из газов Н2, С2Н2 и ∑СХНУ не превышает значений по табл. 3.5, или концентрация газов превышает граничное значение, но не более удвоенного граничного значения по табл. 3.5 только по отдельным газам, то необходимо произвести повторный контроль не позднее, чем через время



где N - граничные значения концентраций газов по табл. 3.5; Аi ,АiП - концентрации газов, полученные при последнем и предыдущем измерении соответственно; Т - период между последним и предыдущим измерением; Тсл - минимальное значение из рассчитанных по газам Н2, ∑СХHУ по выражению в правой части выше приведенного неравенства.

Эти условия в наглядном виде приведены в таблице 3.4.








В соответствии с базой знаний (табл.3.2-3.4) будем определять следующие технические состояния:


Таблица 3.9

dm

Рекомендации по дальнейшей эксплуатации

d1

ввод нормально эксплуатируется с обычно принятой периодичностью контроля

d2

ввод подлежит немедленной отбраковке


d3

ввод с предполагаемым наличием дефекта, требует уточнения диагноза эксплуатационного состояния, допустимо оставить в эксплуатации с периодичностью контроля не позднее 1 год


d4

ввод с предполагаемым наличием дефекта, требует уточнения диагноза эксплуатационного состояния, ввод допустимо оставить в эксплуатации с периодичностью контроля не позднее 0,5 года


d5

ввод с предполагаемым наличием дефекта, требует уточнения диагноза эксплуатационного состояния, ввод допустимо оставить в эксплуатации с расчетной периодичностью контроля


Исходя из базы знаний, целесообразно ввести следующие входные параметры с соответствующими возможными диапазонами изменения [11]:


Таблица 3.10


В случае, когда при измерении x1 <0, то необходимо проверить тщательно результаты других измерений и повторно производить измерение параметра x1. Если это подтверждается, то ввод подлежит отбраковке.

Задача диагностики состоит в том, чтобы каждому сочетанию значений факторов поставить в соответствие одно из решений dm.

Параметры x1-x18, определенные выше, будем рассматривать как лингвистические переменные. Кроме того, введем еще одну лингвистическую переменную: d - опасность повреждения ввода, которая измеряется уровнями d1 - d5.

Для оценки значений лингвистических переменных x1, x2, x5, x6, x17, x11, x12, x13, x14, x15, x16, x17 будем использовать два терма: Н - низкий, В – высокий. Для оценки значений лингвистических переменных x3, x4, x8, x9, x10, x18 будем использовать три терма: Н - низкий, С - средний, В – высокий. Каждый из этих термов задает нечеткое ограничение на множество, заданное с помощью соответствующей функции принадлежности.

Предполагаем, что функции принадлежности параметров x1,, x2, x5, x6, x17, x11, x12, x13, x14, x15, x16, x17 имеют одинаковый вид для каждого терма Н или В.(рис. 3.7.); функции принадлежности параметров x3, x4, x8, x9, x10, x18 имеют одинаковый вид для каждого терма Н, С или В (рис. .8.).





Из таблиц 3.2 – 3.4 формулируем следующие нечеткие высказывания:

1)ЕСЛИ (x1= Н) и (x2 = Н) и (x1- Н) и [(x1= Н) или (x4 = С)] и

(x5 = Н) и (x7 = Н) и (x8 = Н) и (x9 = Н) и (x10 = И) и (x11=Н) и [(x18= Н) или (x18 = С)],

то d = d1

2)ЕСЛИ [x3 = В),

или [(x3 = С) и (x2 = В)],

или {( x3 = С) и [(x1= В) или (x13 = В) или (x14=B)]}э

или [(x8 = С) и (x9 = С) и (x10 = С)],

или (x15 = В),

или (x16 = В),

или (x17 = В),

или [(x6 = В) и (x7 = В)],

или (x8 = В),

или (x9 = В),

или (x11 = В),

или {(x3 = С) и [(x4 = С) или (x4 = В)] и (x11 =В)},

то d = d2

3)ЕСЛИ [(x3=С) и (x1= Н) и (x12 = Н) и (x13 = Н) и (x14 = Н) и(x6 = Н) и (x7 = Н)],

то d = d3

4)ЕСЛИ [(x3 = С) и (x1 = Н) и (x12 = В) и (x13 = В) и (x14 = В) и(x8 = Н) и (x9 = Н) и (x10 = Н) и (x11 = Н)] или [(x18 = Н) и (x8=С) и (x10 = С) и (x13 = Н)],

то d = d4

5)ЕСЛИ [(x11 = В) и (x8 = Н) и (x9 = Н) и (x10 - Н)], или {( x11 =В) и [(x8 = С) или (x9 = С) или (x10=С)]},

то d = d5

Пользуясь функциями принадлежности, запишем эти логические высказывания в виде логических уравнений. При этом заменяем слово "и" операцией “^” (для краткости будем использовать знак "•", слово "или" операцией “V”.



Согласно общего алгоритма [10], решению задачи диагностики соответствует тот диагноз, который имеет максимальное значение функции принадлежности:



Однако для нашей задачи диагностики, в некоторых случаях нет необходимости вычислять все одномерные и многомерные функции принадлежности.

Отметим, что из выше приведенных правил ЕСЛИ...ТО... можно получить однопарамстрические правила:

ЕСЛИ (x3=В), то d = d2;

ЕСЛИ (x8 = В), то d = d2;

ЕСЛИ (x9 = В), то d = d2;

ЕСЛИ (x10 = В), то d = d2;

ЕСЛИ (x15=В), то d = d2;

ЕСЛИ (x16 = В), то d = d2;

ЕСЛИ (x17 = В), то d = d2;

(при этом необходимо учитывать, что параметр xз измеряется по мостовой схеме, а параметры x8, x9, x10, x15, x16, x17 измеряются по методу хроматографического анализа);

двухпараметрические правила:

ЕСЛИ [(x3=С) и (x2 = В)], то d = d2;

ЕСЛИ [(x6 =В) и (x7= В)], то d = d2;

трехпараметрические правила:

ЕСЛИ [(x8 = С) и (x9 = С) и (x10 = С)], то d = d2;

ЕСЛИ {(xз = С) и [(x4=С) или (x4 = В)] и (x11 = В)}, то d = d2;

четырехпараметрические правила:

ЕСЛИ {(x3 =С) и [(x12=В) или (x13 = В) или (x14 = В)]},

то d = d2

ЕСЛИ [(x18 = Н) и (x8 = С) и (x10 = С) и (x13 = Н)]

то d = d4;

ЕСЛИ [(x11 = В) и (x8 = Н) и (x9 = Н) и (x10 = Н)],

то d = d5;

ЕСЛИ {( x11=В) и [(x8=С) или (x9 = С) или (x10 = С)]},

то d = d5;

семипараметрическое правило:

ЕСЛИ [(x3 = С) и (x1 = Н) и (x12 = Н) и (x13 = Н) и (x14 = Н) и

(x6 = Н) и (x7 = Н)], то d = d3;

девятипараметрическое правило: ЕСЛИ [(x3=С) и (x1= Н) и (x12 =В) и (x13= В) и (x14 = В) и (x8 = Н) и (x9 = Н) и (x0 = Н) и (x11 = Н)],

то d = d4

одиннадцатипараметрическое правило:

ЕСЛИ (x1 = Н) и (x2 = Н) и (x3 = Н) и [(x4 = Н) или (x4 = С)] и (x5 = Н) и (x7= Н) и (x8 = Н) и (x9 = Н) и (x10 = Н) и (x11 = Н) и [(x18 = Н) или

(x18 = С)],

то d = d1;

Отсюда следует целесообразность контроля в первую очередь по однопараметрическим правилам сначала параметра x3. Если x3 = В (при этом будем условно говорить, что параметр x3 больше принадлежит терму В, то сразу принимаем решение d = d2, иначе проверяем один из параметров x8 , x9 , x10, x15, x16, x17. Если один из этих параметров больше принадлежит терму В, то также сразу принимаем решение d2, иначе проверяем по двухпараметрическим правилам путем дополнительного рассмотрения параметра x2 (учитываем, что параметр x2 измеряется одновременно с параметром x3 при контроле на подстанции по методу измерения tg). Если условия по двухпараметрическим правилам не выполняются, то переходим к трехпараметрическим правилам и т.д.

Если измеряемые параметры не выполняются ни в одном из правил в базе знаний, то в этом случае необходимо вычислить многопараметрические функции принадлежности, исходя из однопараметрических функций принадлежности по формулам, а затем принимать решение.

Традиционная диагностика по правилам 1, 2, 3 является частным случаем предложенной выше методики с применением теории нечетких множеств.

Таким образом, целесообразно совмещать правила традиционной диагностики и теорию нечетких множеств, поскольку операции сравнения легче выполнять, чем вычисления функции принадлежности. В случае, когда правила традиционной диагностики не срабатывают, следует вычислять функции принадлежности.

Ниже приведем один практический пример, при котором правила традиционной диагностики не позволяют принять решение, а основанные на теории нечетких множеств - позволяют.

Данные измерений для диагностики ввода 110 кВ с маслом типа ГК приведены в таблицах 3.11 и 3.12.

Подставляя данные из таблиц 3.11 и 3.12 в формулы для x с учетом таблиц 3.5 – 3.8, получим значения параметров x. Проверка по одно-, двух-, трех-, четырех-, семи-, девяти- и одиннадцатипараметрическому правилу не дает ответа на диагноз. Это значит, что традиционная диагностика неприемлема в этой ситуации.

Подставляя в формулы найденные значения x, получим значения функций принадлежности. Все эти величины приведены в таблице 3.13.

Поставляя значения функций принадлежности из таблицы 3.13 получим:

Отсюда следует, что среди пяти диагнозов максимальное значение функции принадлежности имеет диагноз d2. Следовательно, ввод подлежит немедленной отбраковке.


Таблица 3.11 Данные измерений  (%)

1,06

1,0

1,4

1,0

0,8

1,2

1,3


Таблица 3.12 Данные измерений по методу ХАРГ (% об. )

240

0

410

3

4

0

1

8

110

0

123

2

2

0

0

4



Список литературы


1. Рыжкин В.Я. Тепловые электрические станции. - М.: Энергия, 1992.-276с.

2. Тепловые и атомные станции. Книга 3. Справочник. Под ред. В.А. Григорьева, В.М. Зорина. 2-е издание, переработанное –М.: «Энергия», 1989, - 600 с.

3. Рыжкова Л.Д., Козулин В.С. Электрооборудование станций и подстанций. Учебник для техникумов. – 2-е изд., перераб. - М.: «Энергия», 1980, - 600 с.

4. Электрическая часть электрических станций и подстанций. Под ред. А.А. Васильева. Учебник для вузов - М., «Энергия», 1980. - 608 с.

5. Электрическая часть электрических станций и подстанций. Справочные материалы для курсового и дипломного проектирования. Под ред. Б.Н. Неклепаева. Изд.2 -е , перер. М., «Энергия», 1972. - 336 с.

6. Околович М. Н. Проектирование электрических станций: Учебник для вузов. - М.: Энергоатомиздат, 1982. - 400 с.

7. Бажанов С.А., Воскресенский В.Ф. Монтаж и эксплуатация маслонаполненных вводов.-М.:Энергоатомиздат, 1981.-104с.

8. Штовба С.Д. Введение в теорию нечетких множеств и нечеткую логику.

9. Заде Л.А. Понятие лингвистической переменной и ее применение к принятию приблеженных решений. М., 1976.

10. Ронштейн А.П. Медицинская диагнстика на нечеткой логике. – Винница: Континент – ПРИМ, 1996. – 132с.

11. Галузевий керівний документ. Маслонаповнені вводи напругою 110 – 750 кВ. Типова інструкція з експлуатації. – Київ, 2004

12. Методические указания по диагностике состояния изоляции высоковольтных вводов 110 – 750 кВ. М.,1990.

13. Методичні вказівки з техніко – економічного обгрунтування інвестиційних проектів електричних станцій. Уклад.: Є.Г. Скловська, К.Г. Тодорович. – К.: Політехніка, 2002. – 24с.

14. Охрана труда в єлектроустановках: Учебник для вузов / Под ред. Б.А. Князевского. – 3-е изд., перераб. И доп. – М.: Єнергоатомиздат, 1983. – 336 с.

Размещено на


Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать