ctgg=(a/b)Rн1~;
где a—масштабный коэффициент по оси ординат, мА/мм; b—масштабный коэффициент по оси абсцисс, В/мм.
Rн1~=(Rк1Rн1)/(Rк1+Rн1), кОм
Подставляем данные, получаем соответственно:
Rн1~=(Rк1Rн1)/(Rк1+Rн1)=(1,3∙1)/(1,3+1)=0,5652 кОм
Подставляем данные а=9мА/мм; b=9В/мм; получаем соответственно:
ctgg=(a/b)Rн1~=(9/9)∙0,5652=0,5652
Зная ctgg находим g: g=60028/
Рисунок 9—Временные диаграммы
Определяем графически параметры: Uкп − напряжение на коллекторе в режиме покоя, Iкп − коллекторный ток покоя, Uвыхm − амплитуду неискаженного выходного напряжения.
С учётом масштабных коэффициентов рисунка 9 a1=0,7; b1=0,7:
Напряжение на коллекторе в режиме покоя Uкп=1,986 В,
Коллекторный ток покоя Iкп=4,071 мА,
Амплитуда неискаженного выходного напряжения Uвыхm=5,857 В.
Начертим эквивалентные схемы и рассчитаем основные параметры усилителей по формулам таблицы 2, где Rвх − входное сопротивление каскада с учетом сопротивления делителя RБ, Rвых − выходное сопротивление каскада, Ki=Iн/Iвх − коэффициент усиления по току, KЕ=Uвых/Ег – коэффициент усиления ЭДС Ег источника сигнала, Кu=Uвых/Uвх − коэффициент усиления по напряжению относительно входного напряжения Uвх, Кр=Рвых/Рвх − коэффициент усиления по мощности, знак || означает параллельное соединение резисторов. Результаты расчета занесём в таблицу 3.
Рисунок 10—Эквивалентным схемам для переменных составляющих тока и напряжения с общим эмиттером (а) и с общим коллектором (б)
Таблица 2—Основные параметры усилителей
Параметры усилителя |
Схема с общим эмиттером |
Схема с общим коллектором |
Rвх |
Rб1 || rвх1; Rб1=R1 || R2; rвх1=rб+(1+b)rэ |
Rб2 || [Rн2~(1+b)]; Rб2=R3 || R4 |
Rвых |
Rк1 || r |
; |
Ki |
; |
|
Ku |
||
KE |
||
Kp |
Ki1 Ku1 |
Ki2 Ku2 |
Rн~ |
Таблица 3—Результаты расчётов
№ варианта |
Схема включения |
Результаты |
Параметры |
|||||
Rвх, кОм |
Rвых, кОм |
КЕ |
Ku |
Ki |
Kp |
|||
1 |
с общим эмиттером |
Расчет |
1,99 |
0,8 |
2,24 |
2,71 |
23,14 |
50,21 |
1 |
с общим коллектором |
Расчет |
0,09 |
0,05 |
0,06 |
0,79 |
0,36 |
0,28 |
Рассчитаем коэффициент температурной нестабильности S по формуле:
Зная β=50, подставив данные в следующию формулу:
Получим уравнение:
Откуда следует α=0,98.
Подставив данные получаем коэффициент температурной нестабильности S для схемы с общим эмиттером равный:
Подставив данные получаем коэффициент температурной нестабильности S для схемы с общим коллектором равный:
Рассчитаем частоты fн, fв, f0 и углы сдвига фаз jн, jв.
Частоты fн, f0 и fв определяем из приближенных выражений:
Для схемы с общим эмиттером:
, ;
где ;
Постоянная времени перезаряда конденсатора Ср1:
Постоянная времени перезаряда конденсатора Ср2:
Постоянная времени перезаряда конденсатора Сэ1:
Постоянная времени перезаряда эквивалентной емкости коллекторного перехода:
Подставив данные рассчитаем постоянную времени перезаряда конденсатора Ср1:
=(1,1+1,99)∙30=92,7
Подставив данные рассчитаем постоянную времени перезаряда конденсатора Ср2:
=(0,8+1)∙30=54
Подставив данные рассчитаем постоянную времени перезаряда конденсатора Сэ1:
=
Подставив данные рассчитаем постоянную времени перезаряда эквивалентной емкости коллекторного перехода:
=
Подставив данные получаем:
=1/(92,7-1+54-1+13,43-1)=10
Расчитаем частоты fн, f0 и fв определять из приближенных выражений:
, ;
fн1=1/2πτн1=1/2∙3,14∙10=0,016 МГц
fв1=1/2πτв1=1/2∙3,14∙0,64=0,25 МГц
МГц
Для схемы с общим коллектором:
, , ;
где ;
Постоянная времени перезаряда конденсатора Ср3
Постоянная времени перезаряда конденсатора Ср4
Постоянная времени перезаряда конденсатора нагрузки Сн2.
Сн2
Подставив данные рассчитаем постоянную времени перезаряда конденсатора Ср3:
=(1,1+0,09)∙30=35,7
Подставив данные рассчитаем постоянную времени перезаряда конденсатора Ср4:
=(0,05+0,2)∙30=7,5
Подставив данные рассчитаем постоянную времени перезаряда эквивалентной емкости коллекторного перехода:
=
Подставив данные получаем:
=1/(35,7-1+7,5-1)=6,2
Расчитаем частоты fн, f0 и fв определять из приближенных выражений:
Для схемы с общим коллектором:
, , ;
fн2=1/2πτн2=1/2∙3,14∙6,2=0,026 МГц
fв2=1/2πτв2=1/2∙3,14∙0,0004=398,09 МГц
МГц
Расчитаем углы сдвига фаз jн, jв по следующим формулам:
, .
Для схемы с общим эмиттером:
Для схемы с общим коллектором:
.
Рассчитаем и построим частотные KE(f) и фазовые j(f) характеристики усилителей.
При расчете зависимостей и следует задаваться частотами f=(0,2; 0,5; 1; 2; 5) fн и f=(0,2; 0,5; 1; 2; 5) fв.
Таблица 4—Результаты расчётов для φ(f)
φн1(f) |
1,37 |
1,1 |
0,75 |
0,36 |
-0,12 |
f от fн1 |
0,0032 |
0,008 |
0,016 |
0,032 |
0,08 |
φв1(f) |
0,12 |
-0,36 |
-0,75 |
-1,1 |
-1,37 |
f от fв1 |
0,05 |
0,125 |
0,25 |
0,5 |
1,25 |
φн2(f) |
1,25 |
0,87 |
0,47 |
0,1 |
-0,38 |
f от fн2 |
0,0052 |
0,013 |
0,026 |
0,052 |
0,13 |
φв2(f) |
0,12 |
-0,35 |
-0,75 |
-1,1 |
-1,37 |
f от fв2 |
79,618 |
199,045 |
398,09 |
796,18 |
1990,45 |
Таблица 4—Результаты расчётов для КЕ(f)
КЕ1(f) |
0,44 |
1,01 |
1,64 |
2,1 |
2,22 |
f от fн1 |
0,0032 |
0,008 |
0,016 |
0,032 |
0,08 |
КЕ1(f) |
2,22 |
2,1 |
1,64 |
1,02 |
0,44 |
f от fв1 |
0,05 |
0,125 |
0,25 |
0,5 |
1,25 |
КЕ2(f) |
0,02 |
0,04 |
0,05 |
0,06 |
0,06 |
f от fн2 |
0,012 |
0,027 |
0,042 |
0,054 |
0,059 |
КЕ2(f) |
0,059 |
0,054 |
0,042 |
0,027 |
0,012 |
f от fв2 |
79,618 |
199,045 |
398,09 |
796,18 |
1990,45 |
Построим частотные KE(f) и фазовые j(f) характеристики усилителей.
Рисунок 11—Фазовые j(f) характеристики усилителей (масштаб для f: φн1(f)=100:1, φв1(f)=10:1, φн2(f)=100:1, φв2(f)=1:200)
Рисунок 12—Частотные KE(f) характеристики усилителей (масштаб для: KE (f н1)=2:1, KE(f в1)=2:1, KE(f н2)=200:1, KE(f в2)= 200:1, f н1=100:1, f в1=10:1, fн2=100:1, f в2= 1:200)
Рассчитаем коэффициенты частотных искажений Мн и Мв.
Коэффициенты частотных искажений определяем из выражений:
Для схемы с общим эмиттером:
,
где ;
;
, ;
, ωв1=2πfв1.
Согласно формулам производим расчёты:
ωв1=2πfв1=2∙3,14∙0,25=1,57;
ωн1=2πfн1=2∙3,14∙0,0016=0,01;
Для схемы с общим коллектором:
,
где ;
,;
, .
Согласно формулам производим расчёты:
ωв2=2πfв2=2∙3,14∙398,09=2505;
ωн2=2πfн2=2∙3,14∙0,026=0,16;
Литература
Жаворонков М.А. Электротехника и электроника. – М.: Академия, 2005.
Новиков Ю.Н. Электротехника и электроника. – СПб.: Питер, 2005.
Касаткин А.С. Курс электротехники. – М.: Высшая школа, 2005.
Миловзоров О.В. Электроника. – М.: Высшая школа, 2005.
Бройдо В.Л. Вычислительные системы, сети телекоммуникации. - СПб.: Питер, 2005.
Хамахер К. Организация ЭВМ. – СПб.: Питер, 2003.
Безладнов Н.Л. Усилительные устройства.—Л.: СЗПИ,1971.
Войшвилло Г.В. Усилительные устройства.—М.: Радио и связь,1983.
Павлов В.М., Ногин В.Н. Схемотехника аналоговых электронных устройств.—М.: Радио и связь, 1997.