Определение эффективности действия ударника по преграде и его рациональных конструктивных параметров
ОГЛАВЛЕНИЕ
Варианты подходов к математическому моделированию функционирования кумулятивных зарядов. 4
Взаимодействие высокоскоростного ударника с различными типами преград. 9
ВЫПОЛНЕНИЕ ОСНОВНЫХ ПОДСЧЁТОВ И АНАЛИЗ РЕШЕНИЯ.. 11
1. График скорости схлопывания. 12
2. График изменения угла схлопывания. 12
3.График скорости кумулятивной струи. 13
4.График изменения глубины пробития преграды.. 14
5.График изменения диаметра отверстия в преграде. 14
ЦЕЛЬ РАБОТЫ
Цель данной работы заключается в определении эффективности действия ударника по преграде и его рациональных конструктивных параметров.
Исходные данные сведены в таблицу:
№ |
d4 мм |
d3 мм |
d2 мм |
d1 мм |
F м |
D м/с |
мм |
мм |
|||
23 |
30 |
30 |
72 |
75 |
78 |
80 |
0,5 |
8950 |
1850 |
10 |
10 |
ROST=7810. ROM =8960. ROVV=1850. DVV = 7802.3 ROPR=7810.
Анализ и математическое описание физических процессов, сопровождающих функционирование кумулятивных зарядов
Варианты подходов к математическому моделированию функционирования кумулятивных зарядов.
Современные теоретические и экспериментальные исследования позволяют получить достаточно полное представление о процессах, протекающих при функционировании КЗ. При срабатывании головного взрывателя его импульс передается детонатору КЗ и происходит инициирование заряда ВВ. Фронт детонационной волны начинает распространяться по заряду со скоростью детонации D. Затем продукты детонации, давление которых зависит от свойств ВВ, угла подхода фронта волны к поверхности облицовки, определяемого расположением и конфигурацией "линзы" воздействует на металлическую облицовку выемки КЗ. Под действием продуктов детонации металлическая облицовка КЗ движется по направлению к оси КЗ, что сопровождается уменьшением ее диаметра в различных сечениях и утолщением самой облицовки, что приводит к появлению градиента скорости по толщине облицовки. Схлопываясь, облицовка деформируется с образованием КС и «песта». Наличие градиента скорости по длине КС, определяемого конструктивными особенностями КЗ, оказывает существенное влияние на кинематику и геометрию КС, следовательно, и на величину бронепробиваемости. Перемещаясь в некотором телесном угле, составляющем для современных КЗ 0,5 ... 1,5°, элементы КС после потери струей сплошности получают боковой импульс, связанный с несимметричностью КС, что совместно с аэродинамическими силами приводит к увеличению углового рассеивания и "намазыванию" КС на стенки сформированного отверстия с потерей бронепробивного действия, которое тем меньше, чем больше допуски на изготовление и сборку кумулятивного узла.
Это обстоятельство приводит к уменьшению так называемого "фокусного" расстояния, определяемого в кумулятивных боеприпасах высотой головного обтекателя, скоростью движения снаряда и временем срабатывания взрывателя с 8 ... 12 калибров для прецизионных КЗ до 1 ... 4 калибров для обычных КЗ с коническими медными облицовками. Кроме того, на величину бронепробиваемости оказывают влияние конструктивные параметры кумулятивного узла: форма и материал КО и корпуса КЗ, тип ВВ, расположение и конфигурация линзы. Область существования кумулятивного эффекта имеет ограничения, связанные, с одной стороны, с критериями струеобразования, а с другой — необходимостью преодоления прочностных сил материала КО. На нижней границе струеобразования находится область формирования неразрушающихся компактных поражающих элементов, а на верхней – КЗ с цилиндрической КО. Из основной части КО (кроме участков, прилегающих к ее торцам) заряда формируется безградиентная КС. Для обеспечения формирования монолитной КС должно выполнятся условие D¢c0, т.е. скорость детонации ВВ не должна превышать скорость звука в материале облицовки. КЗ конической формы с цилиндрической КО формируют КС, аналогичные струям, формируемым КЗ с конической КО. Такие же КС образуются из заряда цилиндрической формы с профилированной КО. В этих случаях формирование КС обеспечивается убыванием скорости обжатия к основанию КО. Многообразие других форм КО и КЗ может быть описано основными закономерностями гидродинамической теории кумуляции. Более высокий градиент скорости по длине КС, повышение скорости ее хвостовых элементов, управление "компактностью" КС реализуется путем применения зарядов с рупорообразной, колоколообразной, полусферической или сегментной облицовкой. В зависимости от поставленной задачи в КЗ могут использоваться и комбинированные формы КО, сохраняющие особенности формирования КС своих частей на соответствующих этапах формирования струи. Рассмотренные типы КО далеко не исчерпывают все известные формы, а формирование КС с требуемыми параметрами может осуществляться и изменением геометрии КЗ. Классические КО, обеспечивая высокую стабильность действия, практически сводят на нет преимущества в бронепробиваемости КО сложных форм, поэтому оптимизацию параметров КЗ, на современном этапе проводят путем совершенствования простых форм варьированием угла раствора, профиля, применением буртиков, "юбок" и т.д. Поиск новых материалов для КО, способных заменить традиционно используемые медь и алюминий и в зависимости от решаемой задачи, в большей степени отвечающих тому или иному параметру, определяющему эффективность действия КЗ, глубине проникания в преграду или специфическим свойствам, влияющим на запреградное действие КС, показал перспективность использования материалов, обладающих высоким удельным весом и высокой пластичностью.
Влияние корпуса КЗ на кинематические параметры струи аналогично влиянию формы заряда: практически непроявляющееся в головной части струи из-за большого слоя ВВ в зоне вершины КО, оно увеличивается по мере приближения к основанию КО, вызывая уменьшение скорости последующих элементов КС и, как следствие, толщины облицовки в основании на 20 ... 30 %. Повышение мощности используемого в КЗ ВВ вместе с изменением скоростных характеристик и режима формообразования КС оказывает влияние на глубину пробития, позволяя при том же градиенте скорости вдоль КС увеличить толщину КО, что в свою очередь обеспечивает увеличение выхода металла из обжимающейся КО в струю, а следовательно, увеличение предельного растяжения КС до разрыва. Координата разрыва КС смещается в сторону увеличения расстояния, на котором КС сохраняет свою сплошность, а значит, эффективность действия.
Введение в КЗ инертных вкладышей (линз), изменяющих характер нагружения КО продуктами детонации и приближающих распределение скорости вдоль КС к оптимальному, является особенно актуальным для кассетных боевых частей и боеукладок танковых управляемых ракет, размещаемых в ограниченных объемах.
Таким образом, все вышеизложенное позволяет сделать вывод о значимости влияния на эффективность функционирования КО каждого из перечисленных параметров и неучет влияния какого-либо из них на этапе проектирования может повлечь за собой искажение общей картины взаимодействия кумулятивного боеприпаса с преградой.
С появлением новых сложных систем бронезащиты, включая динамическую защиту (ДЗ), их преодоление моноблочными КЗ путем оптимизации размеров элементов КЗ, совершенствования технологии изготовления и сборки, использования более мощных ВВ стало затруднительным без значительного увеличения калибра боеприпаса. Это привело к необходимости отработки тандемных схем построения боеприпасов и условий функционирования их у цели. Боеприпас тандемного типа представляет собой два последовательно расположенных заряда, один из которых является основным, отрабатываемым на максимальное бронепробитие, а другой дополнительным, с разновременностью в подрыве взрывателей зарядов, превышающей длительность действия элемента ДЗ, что приводит к срабатыванию последнего до прихода основной КС и обеспечивает ее сохранность. При всей своей эффективности тандемные боеприпасы имеют сложное устройство и требуют учета и детальной проработки следующих факторов: увеличения протяженности эквивалентного пути КС в современной и перспективной бронезащите, угла атаки (и рыскания) боеприпаса, скорости перемещения поражаемой бронецели, накладывающих ограничения на выбор дистанции срабатывания взрывного устройства у цели и диапазона разновременности в инициировании его ступеней. Схема построения тандемного заряда с головным КЗ, срабатывающим вторым, не представляется перспективной для решения задач преодоления разнохарактерной бронезащиты как из-за сложностей в осуществлении значительной разновременности в срабатывании зарядов, так и из-за трудностей реализации суммируемости бронепробивного действия ступеней при активном воздействии преграды и недостаточно большом диаметре кратера от действия первой КС. Аналогично с тандемными кумулятивными боеприпасами могут быть построены трехблочные кумулятивные боеприпасы с двумя предзарядами для преодоления «насыщенных» систем ДЗ. Для конструкций такого типа резко возрастают требования точности сборки, а также возникают трудности при суммируемости бронепробивного действия ступеней при функционировании по быстро движущимся целям. Многофакторность, неоднородность, нестационарность и быстротечность процессов функционирования КЗ и взаимодействия КС с бронепреградой вызывают определенные трудности при их моделировании, отразилось в многообразии подходов к решению данной проблемы. В настоящее время наиболее распространенным продолжает оставаться вероятностный подход, базирующийся как на "чистом" эксперименте, так и построении регрессионных зависимостей, получаемых в результате статистической обработки имеющихся экспериментальных данных, который, в свою очередь, либо полностью охватывает все процессы, протекающих при функционировании КЗ, либо отражает определенную стадию этих процессов.
Страницы: 1, 2