Оптимальное пропускание выходного зеркала для большинства твердотельных
ОКГ составляет 20-60%.
Рабочее тело выполняют в форме стержня с хорошо обработанными торцевыми поверхностями, имеющими плоскопараллельную или сферическую форму.
Точность отклонения обработки торцевых поверхностей от заданной формы лежит в пределах десятых долей длины волны. Параллельность плоских торцов выдерживается с точностью до нескольких угловых минут.
Иногда вместо внешних зеркал используются отражающие покрытия,
нанесенные непосредственно на торцы рабочего тела. Боковая поверхность
рабочих стержней частично или полностью делается матовой, чтобы
предотвратить возбуждение типов колебаний, распространяющихся с отражением
от боковых поверхностей.
Инверсия населенностей в рабочем теле создается методом оптической
накачки. Как отмечено выше, пороговая мощность накачки имеет величину до
сотен ватт на кубический сантиметр рабочего вещества ОКГ. Столь высокая
плотность мощности накачки приводит к сильному нагреванию рабочих тел ОКГ.
Это вызывает трудности, часто непреодолимые, в реализации
непрерывного режима накачки твердотельных ОКГ. Поэтому ОКГ на твердом
теле, как правило, работают в режиме одиночных или периодически
повторяющихся импульсов. Источником накачки служат газоразрядные лампы.
Наиболее часто используются импульсные ксено-новые лампы, обладающие
наилучшей эффективностью преобразования электрической энергии в световое
излучение, спектральный состав которого соответствует линиям поглощения
используемых активных сред.
Лампы конструктивно выполняются в виде прямой или свитой в спираль
трубки с введенными на концах электродами. Для инициации разряда в лампах
предусматривается специальный внутренний или внешний поджигающий электрод.
Лампы и рабочий стержень размещают внутри отражателя, обеспечивающего
эффективность передачи световой энергии накачки в активную среду. При
использовании спиральных ламп рабочее тело помещается внутри них, а
отражатель, выполняемый в виде кругового цилиндра, охватывает лампу.
Более эффективны системы с прямыми лампами и отражателями в виде эллиптического цилиндра (рис.72, б), обеспечивающего фокусировку излучения ламп на рабочий образец. Для этого рабочее тело и лампы размещаются вдоль фокусных осей цилиндра.(Рис. 72,в иллюстрирует систему, в которой содержатся несколько ламп и одно рабочее тело.) Столь же эффективной оказывается более простая система, в которой лампа и активное тело находятся рядом внутри узкого отражателя с круглым или овальным сечением. Отражатель выполняется из серебряной или алюминиевой фольги. В конструкциях систем накачки очень часто предусматриваются охлаждение рабочего тела и ламп путем обдува их воздухом ахи обтекания хладоагентом.
Питание ламп осуществляется от батареи конденсаторов Со (см.рис.72,а ),
заряжаемых часто от сети переменного напряжения через повышающий
трансформатор Тр. и выпрямительный элемент Д. . Нормальное напряжение
заряда конденсаторов должно быть меньше напряжения самопробоя импульсной
лампы накачки. Зажигание разряда в лампе осуществляется подачей на
поджигапщий электрод высоковольтного инициирующего импульса от управляющей
схемы. На рис.72,а последняя состоит из конденсатора С , заряжаемого от
сети через диод Д2, тиратрона с холодным катодом и импульсного
трансформатора Тр1. При замыкании кнопки К тиратрон зажигается, конденсатор
с разряжается через первичную обмотку трансформатора и на вторичной
обмотке появляется высоковольтный импульс.
Рубиновые ОКГ
Были первыми практически осуществленными оптическими квантовыми
генераторами. В настоящее время ОКГ на рубине - наиболее распространенные и
широко используемые в практике. Это объясняется следующими достоинствами
рубиновых ОКГ: излучение происходит в удобном спектральном диапазоне (в
видимой области), обеспечивается большая Энергия генерации, рубиновые
кристаллы легко получить высокого качества, они имеют высокую прочность и
не требуют охлаждения Рубив представляет собой кристалл корунда Аl203,в
котором часть ионов Al3+ замещена трехвалентными ионами хрома Сг3-
Активными частицами, определяющими генерацию, являются ионы хрома. В ОКГ
используют кристаллы розового рубина о массовой концентрацией Сr2О3
относительно Al2O3 , примерно равной 0,05 массы что составляет 1,6*1019
ионов хрома в I см3.
На рис.73 приведена система нижних энергетических уровней ионов хрома.
Она существенно отличается от системы уровней свободных ионов, что связано
со взаимодействием ионов с сильными
[pic]
полями кристаллической решетки. Обозначения уровней, приведенные на рис.73,
заимствованы из теории групп, которая используется при расчете, и не
связаны непосредственно с принятыми обозначениями уровней свободных ионов.
Рабочим является переход 2Е->4А2. Состояние 2Е является метастабильным.
При комнатной температуре его время жизни составляет около 3 мс. Уровень 2E
в действительности состоит из двух подуровней Е и 2А , разделенных
промежутком 29 см-1. Переходы с этих подуровней в основное состояние 4А2
соответствуют линиям излучения света R1 и R2 с длиной волны 694,3 и 692,9
нм при температуре 300°С.
Уровень 4F2 состоит из шести подуровней, которые из-за неоднородности
кристаллического поля настолько уширены, что перекрывают друг друга,
превращая его в полосу. Уровень 4F1 также представляет собой полосу
(см.рис.73).
Обычно генерация происходит на R1 -линии, для которой легче реализуются пороговые условия. Это связано с тем, что между ионами, находящимися на подуровнях Е и 2-4 , ответственных за линии ^ и Rn , существует интенсивный обмен. В результате населенности подуровней Е и 2А устанавливаются в соответствии с законом Больцмана и нижний подуровень имеет большую населенность. Возникновение генерации на частоте R1 - линии предотвращает возбуждение генерации на R2-линии, так как интенсивные релаксационные процессы вызывают переход ионов с 2A на Е и населенность уровня 2А не может достигнуть порогового значения.
Рубиновые ОКГ работают, как правило, в режиме разовых и периодических импульсов. Имеются лишь отдельные разработки генераторов непрерывного действия. Для рубиновых ОКГ характерна длительность импульсов порядка миллисекунд, частота следования обычно не превышает сотни герц. Ее ограничивает нагревание кристалла и ламп накачки.
Важной характеристикой импульсного твердотельного ОКГ является пороговая энергия накачки. Под ней понимают минимальную величину энергии питания ламп за одну вспышку, при которой возникает генерация. Пороговая энергия накачки зависит от размеров кристалла, его температуры, типа используемой лампы, конструкции системы накачки, добротности резонатора и т.д.
Обычно пороговая энергия рубиновых ОКГ составляет десятки и coтни джоулей. С увеличением энергии накачки энергия ОКГ ограничивается возможностями системы накачки, размерами кристалла, его качеством, световой прочностью зеркал и другими факторами.
В ОКГ с кристаллом диаметром 2 см и длиной 30 см генерируемая за
импульс энергия достигает десятков джоулей. При длительности импульса ~ I
мс пиковая мощность генерации составляет десятки киловатт. В ОКГ о
модулированной добротностью (будут рассмотрены далее) импульсная мощность
достигает десятков и более мегаватт. Коэффициент полезного действия,
определяемый как отношение излучаемой энергии ОКГ к потребляемой им
электрической энергии, для рубиновых ОКГ равен единицам процентов. Малый
КПД связан во многом с низкой эффективностью системы накачки. Используемые
в настоящее время импульсные газоразрядные лампы накачки преобразуют в свет
около 50% потребляемой электрической энергии. Примерно 30% световой
энергии ламп, т.е. 15% электрической энергии, соответствует полосам
поглощения рубина. Оптическая часть системы накачки обеспечивает передачу в
рубин приблизительно 00% полезной энергии. Так что реально всего несколько
процентов расходуемой электрической энергии идет непосредственно на накачку
рубина.
[pic]
И [pic]
Излучение рубиновых ОКГ в зависимости от времени имеет сложный
"пичковый" характер. В пределах каждого импульса накачки обычно оно
представляет собой хаотический набор разных по амплитуде пичков, всплесков
интенсивности генерации с длительностью и интервалом между ними порядка
микросекунд.
На рис.75 приведены осциллограммы интен-сивностей накачки (а) и выходного излучения (б).
На характер этого режима влияют многие факторы, в частности
конфигурация резонатора, распределение интенсивности накачки по объему
кристалла, его температура, однородность и т.д. Так, эксперимент
показывает, что хаотичность пульсации излучения значительно уменьшается
вплоть до регулярного следования пичков при использовании в ОКГ открытых
резонаторов, характеризующихся большим числом высоко-добротных типов
колебаний (например, резонатора с одинаковыми сферическими зеркалами,
расположенными на расстоянии, меньшем их удвоенного радиуса кривизны).
Получению режима регулярных пульсации излучения способствует также
однородное распределение интенсивности накачки в рабочем кристалле и
понижение его
температуры.
Важной характеристикой работы ОКГ является картина распределения поля по
площади сечения выходного пучка. Она определяет диаграмму направленности
выходного излучения. Минимальная ширина диаграммы направленности
соответствует основному поперечному ТЕМ00q типу колебаний. В случае
использования плоских круглых зеркал ширина диаграммы направленности по
уровню половинной мощности для ТЕМ00q типа равна Т = 0,63 Л/d рад ( d -
диаметр пятна на зеркале; Л - длина волны). При d = I см, Л = 0,6943 мкм Т
= 4«10~4 рад, т.е. примерно 1,5'. Практически ширина диаграммы излучения
для рубиновых ОКГ превышает величину, вычисленную по этой формуле, раз в
десять .Столь сравнительно большая ширина диаграммы направленности связана
с возбуждением высших типов колебаний, оптическим несовершенством реальных
рубиновых кристаллов (наличием в них центров рассеяния и градиентов
преломления по площади сечения образца). Распределение поля по площади
зеркала часто имеет весьма сложную мозаичную картину, которая в процессе
генерации меняется от пичка к пичку.