Органические полупроводники

Такой разброс значений , безусловно, связан с тем, что некоторые методы приготовления образцов и подготовки их к измерениям не обеспечивают должной их чистоты (наличие примесей, адсорбированных газов или влаги). Поэтому в целом ряде случаев удавалось наблюдать лишь примесную проводимость, несмотря на то, что для приготовления образца использовалось вещество, казалось бы, достаточно высокой степени чистоты, и условия опыта были также достаточно совершенны (например, глубокая эвакуация, термическая обработка образца в вакууме и т. п.). Так, для натертого на кварц слоя фталоцианина меди Вартанян получил при измерениях в вакууме значение =0,9 эв. Многочасовая тренировка слоя в вакууме при температуре 100° С сопровождалась падением электропроводности слоя и ростом энергии активации до значения 1,2 эв. Было установлено, что эти изменения обусловливались постепенной десорбцией кислорода, поскольку напускание кислорода на оттренированный слой вновь приводило к уменьшению энергии активации. То, что даже наивысшая энергия активации, полученная в этих опытах, оставалась много меньше энергии оптического перехода, соответствующей положению участка длинноволнового спада полосы поглощения (1,6—1,8 эв), привело Вартаняна к выводу, что наблюдаемая в этих условиях проводимость была примесной. Зависимость величины проводимости и энергии активации от степени обезгаженности слоев указывала на то, что примесью служил адсорбированный на красителе кислород, который при откачке и примененной термообработке полностью не удалялся.

Собственную проводимость фталоцианина меди с энергией активации 1,7 эв Вартанян и Карпович наблюдали на слоях, полученных возгонкой в условиях высокого вакуума. Этот метод не является единственным, который для фталоцианинов обеспечивает высокую чистоту образца. В работе Филдинага и Гутмена исследовались монокристаллы фталоцианина меди и также была установлена собственная проводимость (=1,64 эв). Собственную проводимость с энергией 1,79 эв удалось найти и для поликристаллических порошков фталоцианина меди, Освобождение вещества от адсорбированного кислорода достигалось в этом случае путем нагревания до 340° С. Измерения проводились в потоке азота.

Все это свидетельствует о том, что если образцы органического полупроводника получаются таким методом или подвергаются такой обработке, которые обеспечивают наибольшую их чистоту, то независимо от метода получения образцов и от характера их структуры наблюдается собственная проводимость с характерной для данного вещества энергией активации.

При перемещении носителей тока в процессе проводимости путь их складывается из участков движения внутри молекул и участков межмолекулярного переноса. Очевидно, что для аморфных, поликристаллических образцов и монокристаллов условия движения носителей между молекулами будут различны. Поэтому близость энергий активации для них указывает на определяющую для электропроводности роль внутримолекулярных процессов. В то же время было показано, что могут наблюдаться различия в величине проводимости у соединений, для которых π-электронные системы тождественны, но условия межмолекулярного переноса электронов различны. Фалмайер и Вольф сопоставили электропроводность обычного и хлорированного фталоцианинов меди. В последнем 15 из 16 атомов водорода замещены атомами хлора. Было найдено, что энергии активации для этих соединений весьма близки (1,79 и 1,86 эв соответственно), но проводимость у хлорированного фталоцианина на порядок выше. Это свидетельствует о том, что наличие тяжелых концевых атомов (в данном случае атомов хлора) обеспечивает лучшие условия для перехода носителей между молекулами, и это приводит к росту подвижности носителей. При неоднократных нагреваниях хлорированного соединения до температур 400—500°С, с которых велось измерение температурной зависимости проводимости, молекулы его постепенно теряли хлор, и прямые  сохраняя наклон, приближались к прямой для исходного фталоцианина меди.


2.5 Электрические свойства полимерных полупрводников


Электрические характеристики полимеров с сопряженными связями имеют широкий диапазон значений: от диэлектрических до полу металлических.

Удельная электропроводность колеблется от 10-19 до единиц Ом-1·см-1; энергия активации проводимости — от 2 до 0,01 эв. Обратимая температурная зависимость электропроводности носит типичный полупроводниковый характер: α экспоненциально растет с температурой по закону Аррениуса.

Отсутствие поляризационных эффектов при длительном пропускании тока свидетельствует о том, что проводимость имеет, как правило, электронную, а не ионную природу.

Исследования полупроводниковых полимеров показывают, что закон Ома для многих образцов соблюдается до напряженности поля 103 —104 в/см, хотя иногда отмечаются отклонения уже в весьма малых полях— порядка 10—100 в/см. Знак носителей тока, определяемый по термо-эде. может быть как положительным (дырки), так и отрицательным (электроны). Однако кислород всегда изменяет термо-эде в положительную сторону, и поэтому возможно, что в противоположность первоначальным представлениям об органических полупроводниках носителями тока в являются преимущественно электроны (как это следует из большинства измерений к вакууме), а дырочная проводимость— результат адсорбции кислорода. У ряда полимерных проводников отмечен внутренний фотоэффект.

У некоторых полимерных полупроводников отмечена способность выпрямлять электрический ток. т. с. неомическое поведение у контактов, что позволило осуществить n-р-переход. Интересно, однако, что из некоторых полимеров удалось получить материалы с истинным р-n-переходом, в частности из радиационно и термически обработанного полиэтилена, который спрессовывали со слоями йодированного полимера, имеющего иной тип проводимости. Коэффициент выпрямления такого р-n-контакта доходил до 25.

Электропроводность полимерных полупроводников с повышением температуры увеличивается примерно па 1—3% на 1 °С. электропроводность неорганических полупроводников на 3—6%. В противоположность электропроводности металлов, которая уменьшается с повышением температуры примерно на 0,3% на 1 °С.

Однако значение температурного коэффициента электропроводности полимеров-полупроводников в большей степени зависит от температурной области, в которой проводятся определения. При очень низких температурах температурный коэффициент можег достигать 20—40% на 1 °С.

Полимерные полупроводники, как и промышленные, обнаруживают термо-э.д.с. в пределах 3 300 мв/град и более.

Подвижность носителей тока в полимерных полупроводниках очень низкая 0,005—0,04 см2/(в·сек) и не может быть измерена с помощью эффекта Холла. Только в пирополимерах отмечается подвижность носителей тока, достигающая 2—100 см2/(в·сек). У неорганических полупроводников подвижность носителей тока составляет 200— 400 см2/(в·сек) и более, хотя у неорганических окислов, например у NiO. подвижность постелей тока мала. По-видимому, высокой подвижности носителей тока можно достичь главным образом на монокристаллических образцах, у которых нет диэлектрических прослоек.


2.6 Механизм электропроводности


Объяснение процессов переноса тока в органических полупроводниках, и особенно в полимерах, пожалуй, наиболее серьезная проблема, возникающая при изучении этих интересных веществ. Здесь следует различать два вопроса: во-первых, как зарождаются носители тока и, во-вторых, каким образом они перемещаются в объеме твердого тела. Механизм возникновения носителей в сопряженных системах не вызывает особых трудностей для понимания. Зарождение носителей тока должно достаточно легко происходить на участках полимера с высокой степенью сопряжения, поскольку с ростом числа сопряженных связей снижается внутримолекулярный барьер для переброса электрона на свободные уровни молекулы и. следовательно, ослабевает возбуждение электрона при переходе в квазисвободное проводящее состояние внутри молекулы. Действительно, опытами по измерению проводимости на переменном токе показано, что энергия зарождения носителей внутри области сопряжения близка к нулю и уж во всяком случае значительно меньше энергии межмолекулярных переходов.

 Гораздо сложнее вопрос о механизме перемещения носителей заряда между сопряженными молекулами или областями сопряжения, поскольку именно этой стадией лимитируется суммарный процесс электропроводности во всем объеме полимера. В любом предлагаемом механизме должен учитываться ряд установленных сейчас особенностей, которые необычны не только для органических веществ, но и для большинства хорошо изученных неорганических полупроводников. Рассмотрим важнейшие из таких особенностей.

Электронная неоднородность. Измерения разными методами (исследования на переменном токе; изучение шумов тока, влияния адсорбции иода и воздуха и др.) позволили прийти к выводу о микрогетерогенности структуры полупроводниковых полимеров, т.е. о том, что все полимеры состоят из отдельных хорошо проводящих областей (по всем вероятности, сильно сопряженных или конденсированных участков), разделенных плохо проводящими         диэлектрическими участками, очевидно с неупорядоченной структурой полимерных молекул.

Характер обратимой температурной зависимости термо-эдс. В большинстве случаев коэффициент термо-эдс α или почти не зависит от температуры, или растет при нагревании. Это означает, что температурная зависимость α так же как температурная зависимость σ определяется изменением подвижности носителей при их постоянной концентрации, так как при таком механизме теория предсказывает слабый (логарифмический) рост α с увеличением температуры:


,(2.4)


где А — константа, зависящая от механизма рассеяния электронов;  и n — эффективная масса и концентрация носителей тока; и h - постоянные Больцмана и Планка; Т-абсолютная температура. Такие проводники называют вырожденными.

В случае, когда изменение значений α и σ в зависимости от температуры обусловлено главным образом экспоненциальным ростом концентрации носителей (невырожденные проводники), α будет согласно теории падать с ростом температуры пропорционально величине 1/T:


.(2.5)


Для некоторых полимеров обнаружено снижение α с температурой, однако и в этих случаях обычно имеет место снижение недостаточно сильное для того, чтобы его можно было отнести за счет определяющего влияния концентрации носителей.

Очень малая подвижность носителей заряда. Попытки измерить подвижность носителей в полимерах с помощью эффекта Холла оказывались, как правило, неудачными. Это означает, что подвижность носителей не превышает 0.005—0.01 см /в·сек. Лишь в нескольких случаях такие измерения дали положительные результаты: например, для одного из полиацепхинонных радикалов было получено очень малое значение подвижности: u = 0.04 см2 /в·сек, а для комплекса поливинилкарбазола с иодом u = 0,4 см2/в·сек. В полифталоцианине меди обнаружилась неожиданно высокая подвижность u = 2.5 10 см2/в·сек., однако воспроизвести измерение эффекта Холла не удалось, а подвижность, определенная по влиянию адсорбции кислорода на электропроводность, оказалась гораздо меньшей порядка 102 см2/в·сек. Столь малым значениям подвижности соответствует концентрация носителей тока в полимерах не более 1012-1017 в 1 см3.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать