Принципиальная схема конденсационной и электрической станции (КЭС) - установки, вырабатывающей только электроэнергию, показана на рисунке 2.
Теплоэлектроцентраль (ТЭЦ) вырабатывает не только электроэнергию, но и низкопотенциальное тепло в виде пара низкого давления или горячей воды. Пар обычно используется для заводских технологических целей, а горячая вода - для отопления и бытовых потребностей. Принципиальная схема ТЭЦ приведена на рисунке 3.
Рисунок 3 - Принципиальная схема теплоэлектроцентрали (ТЭЦ): 1 - котлоагрегат; 2 - паропровод; 3 - паровая турбина; 4 - турбоэлектрогенератор; 5 - конденсатор; 6 - насосы; 7 - регенеративные подогреватели; 8 - деаэратор; 9 - водоподготовительная установка; 10 - отбор пара на производство; 11 - сетевая вода; 12 - подогреватель сетевой воды.
Схема ТЭЦ отличается от схемы КЭС наличием отборов пара из турбины не только для подогрева питательной воды, но и для отпуска пара потребителю и для подогрева циркулирующей по отопительным (теплофикационным) сетям города воды (так называемой сетевой воды). Конденсат подогревателей сетевой воды возвращается в котлоагрегат, но конденсат пара, отданного на производство, частично не возвращается. Поэтому на ТЭЦ водоподготовительная установка должна иметь производительность, достаточную для покрытия всех потерь конденсата (до 30 - 50% и более от расхода пара).
При отпуске тепла от электростанций с газовыми турбинами (рис.4) требуются газоводяные подогреватели, а при отпуске его от электростанций с двигателями внутреннего сгорания - котлы-утилизаторы, использующие тепло охлаждающей воды рубашек и выхлопных газов от двигателей. Аналогичные котлы-утилизаторы иногда обогреваются отходящими газами печей при их достаточно высокой температуре. Такое использование теплоносителя, обычно газов, уже полезно отдавших часть своего тепла в зоне высоких или средних температур, для последующего получения теплоносителя низких температур может дать существенную экономию топлива, а потому оно нередко применяется в тепловом хозяйстве промышленных предприятий.
Рисунок 4 - Схема газотурбинной установки: 1 - насос; 2 - компрессор; 3 - камера сгорания; 4 - турбина; 5 - электрогенератор.
Однако использование этих, как их называют - вторичных тепловых ресурсов играет подсобную роль, обеспечивая экономию топлива при их использовании совместно с основными источниками теплоснабжения - котельными или ТЭЦ. Аналогично этому сравнительно небольшая электрическая мощность электростанций с газовыми турбинами или двигателями внутреннего сгорания ограничивает возможности их использования в качестве основных источников теплоснабжения для крупных систем. Более перспективны так называемые парогазовые ТЭЦ, на которых установлены газовые и паровые турбины, работающие в общем цикле (рис.5).
Рисунок 5 - Принципиальная схема парогазовой установки ПГУ-200-130: 1 - компрессор; 2 - газовая турбина; 3, 15 - электрогенераторы; 4 - экономайзер первой ступени; 5 - экономайзер второй ступени; 6 - экономайзер третьей ступени; 7, 12 - подогреватели низкого давления; 8 - питательный насос; 9 - подогреватель высокого давления; 10 - парогенератор; 11 - деаэратор; 13 - насос; 14 - конденсатор; 16 - паровая турбина.
По прогнозу, опубликованному World Coal Institute, при сегодняшних темпах добычи ископаемого топлива доказанных мировых запасов нефти хватит всего на 45 лет, природного газа - на 65 лет, угля - более чем на 200 лет. Для России характерно примерно такое же соотношение. Поэтому основную долю в структуре энергетических мощностей России на ближайшую перспективу будут составлять угольные тепловые электрические станции (ТЭС), дающие наибольшее количество вредных выбросов.
Известно, что на каждую 1000 МВт • ч произведенной электрической энергии на традиционных ТЭС вредные выбросы составляют: SO2 - 31,8 т; NOX - 3,0 т; СО2 - 870 т. При этом в отвал идет 73 т золы и шлака, сбрасывается (6 - 8) • 106 МДж теплоты и потребляется 633 т атмосферного кислорода.
Проектируемые в последние годы в России ТЭС с серо - и азотоочисткой позволят снизить выбросы оксидов серы на 95%, оксидов азота - на 80%. Однако, использование дополнительного газоочистного оборудования увеличивает на 30 - 50% капитальные вложения на сооружение ТЭС, а затраты энергии на собственные нужды - с 5 - 7 до 12 - 15%. К тому же резко возрастают расходы воды, площади земель, отчуждаемых под ТЭС, дополнительные эксплуатационные затраты на дорогостоящие реагенты, катализаторы и пр. Все это вместе приводит к существенному увеличению сроков окупаемости капитальных вложений на сооружение новых ТЭС. К тому же используемые методы очистки не исключают полностью вредных выбросов ТЭС и ведут даже к некоторому увеличению количества сбросного тепла и выбросов СО2.
Стоимость установленного киловатта на вновь проектируемых пылеугольных ТЭС, с учетом использования природоохранных технологий и ограничения мощности для уменьшения воздействия на окружающую среду, резко возросла. Так, если стоимость установленного киловатта на Березовской ГРЭС-1 мощностью 6400 МВт, проект которой был выполнен в 1989 г., составляла 345 долл. США, то стоимость установленного киловатта на проектируемой в настоящее время новой Ростовской ГРЭС мощностью 1280 МВт с котлами ЦКС превышает 1000 долл. США. Для станций же мощностью 120 МВт на отвальной породе (также с котлами ЦКС) стоимость установленного киловатта в настоящее время достигает 2000 долл. США.
Наиболее крупным, проверенным на практике и имеющим минимальный срок окупаемости является проект установки электрогенерирующих комплексов с противодавленческими турбинами вместо дроссельно-регулирующих устройств. Энергоблоки единичной мощностью от 0,5 до 25 МВт могут устанавливаться на предприятиях РАО "ЕЭС России", в нефтяной и газовой отраслях, металлургии и пищевой промышленности, в жилищно-коммунальном хозяйстве. Производителями энергетического оборудования для этой технологии являются российские конверсионные предприятия: ОАО "Калужский турбинный завод", ОАО "Пролетарский завод", ОАО "Электросила", ОАО "Привод", ОАО "Сафоновский машиностроительный завод", электротехнические и металлургические заводы. Общий потенциал использования подобной технологии, по оценке, составляет 15-17 млн кВт. Стоимость 1 кВт установленной мощности уменьшается с 450 долл. США для энергокомплекса мощностью 0,5 МВт до 250 долл. для энергокомплексов мощностью более 6 МВт. Количество топлива для выработки 1 кВт-ч составляет 140-150 г у. т., срок окупаемости проекта для отдельной установки находится в пределах 1-2 лет. Ежегодный выпуск энергооборудования в России может быть доведен до 400-500 МВт в год.
Аналогичной по экономическим показателям является технология производства электроэнергии с установкой в качестве привода электрогенератора газовой турбины перед имеющимся паровым или водогрейным котлом. В этом случае котлы будут работать с использованием тепла продуктов сгорания, выходящих из газовых турбин. Однако в настоящее время в нашей стране отсутствует серийное производство стационарных высокоэффективных газовых турбин для привода генератора. Несмотря на то что на территории России создаются или уже созданы совместные предприятия с западными фирмами АВВ, "Сименс", "Дженерал электрик", трудно ожидать быстрого развития этого направления в течение ближайших лет, так как для этого потребуются опытно-промышленные испытания этой технологии.
В другом крупном проекте внедрения бестопливных технологий в РАО "Газпром" предусмотрена установка блочных электрогенерирующих комплексов единичной мощностью 6-7 МВт с конденсационными турбинами на газокомпрессорных станциях магистральных трубопроводов. В качестве тепла предлагается использовать энергию отработавших в газовой турбине компрессора продуктов сгорания с температурой более 350 °С. Общий потенциал энергосбережений на компрессорных станциях ориентировочно составляет 4-5 млн кВт. Экономия топлива достигнет 8 млн т у. т. в год. Стоимость 1 кВт установленной мощности - 700 долл. США, срок окупаемости проекта для РАО "Газпром" - 2 года. Для широкого внедрения технологии необходимо завершить изготовление опытного образца и провести испытания на ГКС "Чаплыгин" ГП "Мострансгаз".
Прошли первые опытно-промышленные испытания энергосберегающей технологии производства электроэнергии с использованием в качестве привода электрогенератора двух газорасширительных турбин мощностью по 5 МВт, созданных АО "Криокор" и работающих на перепаде давления природного газа. Общий потенциал перепада давлений, по оценке ЭНИНа, составляет 3000 МВт. В то же время следует заметить, что за последние 5 лет не введено дополнительно ни одного энергоблока такого типа. Ожидать существенного изменения темпа внедрения этой технологии при отсутствии конкретных организационных мероприятий не следует.
Сооружение крупных гидроэлектростанций требует меньших удельных капитальных вложений, но сопряжено с изъятием больших площадей под водохранилища. При этом нарушается экологический баланс в районе их возведения и затрудняется миграция рыбы вдоль русел рек, перегораживаемых плотинами ГЭС. Следует отметить, что в настоящее время в Российской Федерации практически исчерпан гидропотенциал всех больших рек, поэтому в дальнейшем можно рассчитывать, в основном, только на создание мини - и микроГЭС.
Развитие атомной энергетики, доля которой в РФ за последнее пятилетие составила только 12,3% по вырабатываемой энергии, в настоящее время затруднено, поскольку имеются сложности в реализации всех этапов ядерного цикла: от разработки урановых месторождений, обогащения и металлургического передела сырья до ликвидации АЭС, транспортирования и захоронения отходов.
Затраты на ликвидацию блоков АЭС, отработавших свой ресурс, сопоставимы с затратами на их возведение. Одна лишь выгрузка тепловыделяющих элементов (ТВЭЛ) из ядерного реактора занимает примерно год. Для разборки как самих реакторов, так и вспомогательного облученного оборудования требуется применение специальных дистанционно управляемых механизмов. Поэтому, например, на АЭС "Шенон" во Франции на разборку первого энергоблока было затрачено 6 лет.
После Чернобыльской аварии общественное мнение в России настроено против сооружения новых АЭС, несмотря на большие работы, проводимые по созданию нового поколения ядерных реакторов повышенной безопасности. Не убеждает и идея подземного размещения АЭС, так как детальный анализ показывает, что и подземные АЭС опасны не менее наземных.
АЭС повышенной безопасности за весь свой срок службы едва ли смогут окупить всю сумму затрат на создание нового оборудования, строительство станций, их эксплуатацию, включая приготовление и доставку ядерного топлива, последующую ликвидацию ядерных энергоблоков, транспортирование и захоронение отходов и их гарантированное хранение в течение не менее 24 тыс. лет. Да и ядерного топлива в России осталось не так уж много, поэтому строительство новых АЭС в стране весьма проблематично.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12