Особенности выбора расходомера

С помощью тепловых расходомеров может быть обеспечена точность измерения расхода вязких продуктов ±22,5%.

Для измерения расхода газов используют калориметрические расходомеры. В состав расходомера входят: 1,2- термометры сопротивления, 3- электрический нагреватель. Если пренебречь теплотой, отдаваемой потоком в окружающую среду, то уравнение теплового баланса имеет вид:


,


где


кол-во теплоты, отдаваемое нагревателем жидкости или газу,поправочный коэффициент на неравномерность распределения температур по сечению трубы,массовый расход вещества,уд. массовая теплоёмкость при температуре


,


разность температур нагреваемой среды до и после нагревателя.



Существует два способа измерений расхода: измерение по мощности, потребляемой нагревателем и обеспечивающей постоянную разность температур ; измерение по разности температур  при постоянной мощности нагревателя (разность температур измеряется термометрами сопротивления, выполненных в виде сетки, что позволяет измерять среднюю температуру по сечению трубопровода). Второй способ является более экономичным, т.к. контролируемая среда нагревается на 1-3 ºС, поэтому даже при больших расходах потребляемая мощность невелика.

Достоинства: высокая точность измерений (), большой диапазон измерений (10:1), измерение пульсирующих и малых расходов.

Недостатки: сложность устройства для автоматического поддержания заданной разности температур и постоянного расхода электроэнергии на нагрев потока.


2.4.3 Вихревые расходомеры

В настоящее время разработаны и имеют весьма широкие перспективы применения вихревые расходомеры, принцип действия которых основан на зависимости от расхода частоты колебаний давления среды, возникающих в потоке в процессе вихреобразования.



Измерительный преобразователь вихревого расходомера (рис. VIII.19) представляет собой завихритель 1, вмонтированный в трубопровод, с помощью которого поток, завихряется (закручивается) и поступает в патрубок 2. На выходе из патрубка в расширяющейся области 4 установлен пьезометрический преобразователь 3, воспринимающий и преобразующий вихревые колебания потока (для которых имеет силу зависимость:


,

где частота пульсаций на преобразователе,-константа Строухала,диаметр лицевой, относительно потока, части препятствия,скорость потока) в электрический сигнал (переменное напряжение), который далее приводится к нормализованному виду, отвечающему требованиям ГСП.

Завихрения потока формируются таким образом, что внутренняя область вихря - ядро, поступая в патрубок 2, совершает только вращательное движение. На выходе же из патрубка в расширяющуюся область 4 ядро теряет устойчивость и начинает асимметрично вращаться вокруг оси патрубка.

Достоинства: широкий диапазон температур, возможность использования практически на любых средах.

Недостатки: чувствительность к влиянию внешних помех (вибрации), ненулевая шкала.


2.5 Акустические расходомеры


Для измерения расходов загрязненных, агрессивных и быстро-кристаллизующихся жидкостей и пульп, а также потоков, в которых возможны большие изменения (пульсации) расходов и даже изменения направления движения, когда не могут быть применены другие виды расходомеров, используются расходомеры акустические, чаще всего ультразвуковые (частота звуковых колебаний более 20 кГц).

В основном используют два метода. Один метод основан на измерении разности фазовых сдвигов двух ультразвуковых колебаний, направленных по потоку и против него (фазовые расходомеры).

Другой метод основан на измерении разности частот повторения коротких импульсов или пакетов ультразвуковых колебаний, направленных одновременно по потоку и против него (частотные расходомеры).

2.6 Фазовые расходомеры


Если колебания распространяются в направлении скорости потока, то они проходят расстояние L за время



где а — скорость звука в данной среде; V — скорость потока. При распространении колебаний против скорости потока время



Отношение  весьма мало по сравнению с единицей (для жидкостей скорость звука 1000...1500 м/с; V = 3...4 м/с), поэтому с большой степенью точности можно принять


 


В фазовых расходомерах фиксируется разность времени



На поверхности трубопровода расположены два пьезоэлектрических элемента 1 и 2. Пьезоэлемент 1 механическим переключателем 3 подключен к генератору высокочастотных синусоидальных электрических колебаний. Пьезоэлемент преобразует электрические колебания в ультразвуковые, которые направляются в контролируемую среду через стенки трубопровода. Пьезоэлемент 2 воспринимает ультразвуковые колебания, прошедшие в жидкости расстояние L, и преобразует их в выходные электрические колебания.

Наличие в схеме механического переключателя ограничивает возможность измерения быстро меняющихся расходов вследствие небольшой частоты переключений (порядка 10 Гц). Это можно исключить, если в трубопроводе установить две пары пьезоэлементов так, чтобы в одной паре излучатель непрерывно создавал колебания, направленные по потоку, а в другой — против потока. В таком расходомере на фазометр будут непрерывно поступать два синусоидальных колебания, фазовый сдвиг между которыми пропорционален скорости потока.


2.6.1 Частотно-пакетные расходомеры

Принцип действия этих расходомеров основан на измерении частот импульсно-модулированных ультразвуковых колебаний, направляемых одновременно по потоку жидкости и против него.

Генераторы Г создают синусоидальные колебания высокой частоты (10 МГц) и подают их через модуляторы М на излучающие пьезоэлементы П1 и ПЗ. Пьезоэлемент П1 создает направленные ультразвуковые излучения (с частотой 10 МГц), которые воспринимаются пьезоэлементом П2.



При неподвижной жидкости время распространения излучений при расстоянии L между пьезоэлементами


.


Если жидкость перемещается по трубе со скоростью V, то составляющая скорости в направлении движения ультразвуковых колебаний равна , следовательно, время перемещения колебаний между пьезоэлементами П1 и П2 по потоку жидкости



Соответственно время перемещения колебаний между пьезоэлементами ПЗ и П4 против направления потока

.


Модулятор совместно с двумя пьезоэлементами и усилителем-преобразователем УП включены в схему периодического модулирования. Как только первые колебания, поступающие на приемные пьезоэлементы П2 и П4, достигнут модуляторов, работающих в триггерном режиме, произойдет отключение генераторов от пьезоэлементов П1 и ПЗ, и излучение ультразвуковых колебаний прекращается. Оно возобновляется в те моменты, когда последние ультразвуковые колебания первых пакетов достигнут приемных пьезопреобразователей и генерация последних электрических колебаний прекратится. В эти моменты модуляторы вновь пропускают электрические колебания от генератора к приемным пьезоэлементам и процесс повторяется. Частота модулирования сигналов зависит от скорости потока и направления ультразвуковых колебаний (по потоку или против него).

Разность частот, определяемая пересчетной схемой ПС, пропорциональна скорости движения жидкости:



Разность  регистрируется прибором РП.

По значению  определяют скорость потока и объёмный расход:


,


где коэффициент, учитывающий различия в усреднении скорости по площади сечения трубопровода; внутренний диаметр трубопровода.

Разность частот прямо пропорциональна скорости и не зависит от скорости распространения звука в среде. Это является преимуществом частотного метода, так как исключается воздействие физических параметров среды (плотность, температура) на показания прибора.

Достоинства: относительно высокая точность (); широкий диапазон рабочих температур ( от -200ºС до +600ºС); возможность измерять быстропеременные (пульсирующие) расходы; для замены и обслуживания не требуется разгерметизации оборудования (исполнение с накладными датчиками); бесконтактность измерений; отсутствие движущихся частей в потоке; отсутствие потерь давления в трубопроводах; нет влияния физических факторов среды на показания прибора (плотность, температур и др.) при частотном методе; широкий диапазон диаметров трубопроводов (от 6 мм до 6500 мм); широчайший диапазон измерения величины расхода (0,0012985000 м³/ч).

Недостатки: зависимость точности измерений от качества стенок трубопровода.


2.7 Напорные устройства



Напорные устройства- устройства, создающие перепад давления, зависящий от динамического давления потока (скорости). Используются для измерения скорости потока, а также расходов жидкостей и газов (редко).

Принцип действия основан на помещении в трубопровод Г-образной трубки (трубка Пито), направленной изгибом на поток. Трубка воспринимает полное давление в трубопроводе равного сумме динамического, зависимого от скорости потока, и статического давления трубопровода. Чтобы измерять скорость или расход, помимо трубки Пито необходимо установить в трубопроводе ещё одну трубку для отбора статического давления, а так же ввести поправочныё коэффициент. Давление в трубке Пито выражается по следующей формуле:


,


где статическое давление в трубопроводе, плотность жидкости (газа),скорость потока.

Для второй трубке формула имеет вид:



Зная перепад давлений и плотность вещества можно найти скорость и расход.

Чаще для измерения расхода используют анюбар, который обеспечивает усреднение динамического давления потока по всему сечению трубопровода. Анюбар состоит из 2-х секций в одном корпусе, расположенных под углом 90º друг к другу. Отверстия положительной секции ("+") расположены встречно потоку, а отрицательной ("-") – перпе-ндикулярно.

Недостатком данного метода является то, что он применим только в трубопроводах большого диаметра.

Недостатки: сопротивление потоку (потеря давления), низкая точность ().

Достоинства: простота конструкции.


2.7.1 Кориолисовые расходомеры


Принцип действия основан на возникновении ускорения и силы Кориолиса в массе жидкости или протекании их через вибрирующую U-образную трубку. Расходомер состоит сенсора и преобразователя сигнала. Сенсор состоит из одной или двух U-образных трубок (нержавеющая сталь), электромагнитной катушки, расположенной в центре изгиба, 2-х индуктивных датчиков и поверхностного термометра сопротивления.



Среда, расход которой измеряется, поступает на вход преобразователя и изменяет направление движения по U-образной трубке. Среда проходит по одному колену трубки в прямом направлении, а по другому- в обратном. В середине U-образной трубке на её конце установлен электромагнит- вибровозбудитель, сообщающей трубке поперечное синусоидальное колебание. При этих условиях среда протекающая по трубке имеет поступательное и вращательное движение. Их совокупность вызывает появление ускорения и силы Кориолиса. За счёт разной направленности поступательного движения среды по коленам трубки сила Кориолиса в зоне перехода прямых участков трубки в дугообразные воздействует в противоположных направлениях и в зоне перехода на трубку действуют моменты сил, изгибающие трубку в вертикальной плоскости. Во входной половине трубки сила Кориолиса, действующая на трубку со стороны среды, расход которой измеряется, препятствует смещению трубки, а в выходной способствует смещению. В зонах перехода дугообразного участка трубки в прямолинейные участки установлены электромагнитные преобразователи результирующих колебаний трубки. Трубка колеблется в вертикальной плоскости с амплитудой пропорциональной массе среды протекающей через U-образную трубку. Электромагнитные преобразователи измеряют величину амплитуды колебаний и сдвиг фаз, который происходит за счёт отставания возникновения сил Кориолиса на сопряженных участках. Расход определяется путём измерения временной задержки между сигналами электромагнитных преобразователей, а плотность- измерением резонансной частоты колебаний (резонансная частота является функцией массы, а масса пропорциональна плотности). Термометр сопротивления на поверхности трубки учитывает изменение модуля упругости материала трубки.

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать