Условная суммарная освещённость в контрольной точке
∑еа = е11 + е12 =20+30=50лк. (2.9)
5. Определяем расчётное значение линейной плотности светового потока
лм·м-1 (2.10)
где Ен – нормированное значение освещённости рабочей поверхности, лк;
Кз – коэффициент запаса;
µ - коэффициент добавочной освещённости, учитывающий воздействие "удалённых" светильников и отражённых световых потоков на освещаемую поверхность ( принимаем равным 1,1…1,2);
6. Выбираем тип источника света (табл.1.7)[1] в зависимости от характеристики зрительной работы – различие цветных объектов без контроля и сопоставления при освещенности 150 … 300 лк. Принимаем лампу типа ЛБ и учитывая мощность светильника, окончательно – ЛБ - 80. По табл. 1.7, поток лампы Фл=5400 лм.
7. Количество светильников в светящемся ряду длиной
Lр = А–2·lа =7–2·1,8=3,4 м
светильников (2.11)
где nс – число ламп в светильнике, шт.;
Lр – длина светящегося ряда, м
Принимаем N1=4 светильников.
8.Общее число светильников в помещении (по формуле 2,5).
светильников
9. Расстояние между светильниками в ряду, предварительно определив длину светильника по табл. 1.17[1] lс=1,514м
м (2.12)
10. Проверяем расположение светильников в ряду с учётом требований равномерности:
0 ≤ lр ≤ 1,5·L′в (2.13)
0 < 1 < 6,3
Требование равномерности выполнено.
2.6.2 Метод коэффициента использования светового потока
Метод коэффициента использования светового потока осветительной установки применяют при расчёте общего равномерного освещения горизонтальных поверхностей в помещениях.
Помещение № 3.
1. Определяем в зависимости от материала и окраски поверхностей коэффициенты отражения потолка: ρп=50%, стен: ρс=30%, рабочей поверхности: ρр=10%.
2. Индекс помещения
,(2.13)
3. Определяем коэффициент использования светового потока
,(2.14)
где – коэффициент использования светового потока, направленного в нижнюю полусферу;
и – КПД реального светильника в нижнюю и верхнюю полусферу пространства;
– коэффициент использования светового потока, направленного в верхнюю полусферу.
4. Расчётный световой поток лампы определяем по формуле
,(2.15)
где – площадь освещаемого помещения, ;
z – коэффициент минимальной освещённости (отношение средней освещённости к минимальной).
Фрлк
5. По формуле 2.11 выбираем лампу БК-215-225-75, световой поток лампы 1020лк.
6. По условию 2.12 проверяем возможность установки лампы в светильник. Для светильника НСП02-100 допустимая мощность лампы 100Вт, таким образом, условие выполняется.
2.6.3 Метод удельной мощности
Метод удельной мощности применяют для приближённого расчёта осветительных установок помещений, к освещению которых не предъявляют особых требований и в которых отсутствуют существенные затенения рабочих поверхностей, например, вспомогательных и складских помещений, кладовых, коридоров и т.п.
Помещение № 6.
1. Табличное значение удельной мощности
а) Р туд=25,4 Вт/м2.
2. Определяем расчётное значение удельной мощности:
(2.16)
где – коэффициент приведения коэффициента запаса к табличному значению;
– коэффициент приведения коэффициентов отражения поверхностей помещения к табличному значению;
– коэффициент приведения напряжения питания ламп накаливания к табличному значению;
25,4*0,85*0,42*1=9,1 Вт/м2
3. Расчётное значение мощности лампы:
,(2.17)
4. По расчётной мощности выбираем подходящую лампу, соблюдая условия:
, (2.18)
,
Выбираем лампу накаливания Б-100, мощность лампы 100Вт. По условию 2.12 проверяем возможность установки лампы в светильник. Для светильника НСП21-100 допустимая мощность лампы, устанавливаемой в светильник 100Вт, таким образом, условие выполняется.
2.7 Составление светотехнической ведомости
После расчета всех помещений здания составляется светотехническая ведомость объекта. В ней сведены все данные использовавшиеся для проектирования осветительной установки, а так же окончательные решения по выбору осветительных приборов и источников света. Светотехническая ведомость приведена в таблице 2.3.
3. РАСЧЁТ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ ОСВЕТИТЕЛЬНЫХ УСТАНОВОК
3.1 Выбор напряжения и схемы питания электрической сети
В общем случае выбор напряжения электрической сети осветительной установки определяется степенью опасности поражения людей и животных электрическим током в рассматриваемом помещении.
В помещениях без повышенной опасности напряжение 220 В допускают для всех светильников общего назначения независимо от высоты их установки.
В помещениях с повышенной опасностью и особо опасных при установке светильников с лампами накаливания на высоте более 2,5 м над полом или обслуживающей площадкой так же допускают напряжение 220 В. При высоте подвеса меньше 2,5 м должны применять светильники, конструкция которых исключает возможность доступа к лампе без специальных приспособлений, либо напряжение должно быть не выше 42 В. Разрешается установка светильников с люминесцентными лампами на высоте менее 2,5 при условии, что их контактные части будут недоступны для случайных прикосновений.
Светильники местного стационарного освещения с лампами накаливания в помещениях без повышенной опасности должны питаться напряжением 220 В, а в помещениях с повышенной опасностью и особо опасных - не выше 42 В. Для питания переносных светильников в помещениях с повышенной опасностью и особо опасных также должно применяться напряжение не выше 42 В. При этом применяют трансформаторы типа ОСОВ-0.25 и ТСЗИ.
В случаях, если опасность поражения электрическим током усугубляется теснотой, неудобным положением работающего, соприкосновением с большими металлическими хорошо заземленными поверхностями, питание переносных светильников должно быть не выше 12 В.
Наиболее часто для питания электрического освещения в сельскохозяйственном производстве применяют систему трехфазного тока с глухим заземлением нейтрали напряжением 380/220 В. Источники света при этом подключают, как правило, на фазное напряжение. Газоразрядные лампы высокого давления (ДРЛ, ДРИ, ДНаТ, ДКсТ и др.), рассчитанные на напряжение 380 В, допускается подключать на линейное напряжение 380 В системы 380/220 В.
Осветительные и облучательные сети, прокладываемые от источников питания до потребителей, состоят из групповых и питающих линий. Групповые линии прокладывают от групповых щитков до светильников или облучателей и штепсельных розеток. К питающим линиям относят участки сети от источника питания до групповых щитков.
Питающие линии обычно выполняют пятипроводными (трёхфазными), а групповые - трех- и четырёхпроводными в зависимости от нагрузки и длинны.
Питающие линии могут быть магистральными, радиальными или радиально-магистральными. Наиболее широкое распространение на сельскохозяйственных предприятиях нашли радиально-магистральные схемы.
Схемы питания осветительной или облучательной установки выбирают по следующим условиям: надёжность электроснабжения, экономичность (минимальные капитальные и эксплуатационные затраты), удобство в управлении и простота эксплуатации.
Радиальные сети по сравнению с магистральными имеют меньшее сечение проводов, меньшие зоны аварийного режима при неисправности в питающих сетях, но большую общую протяжённость. Необходимость применения радиальной сети может быть также вызвана условиями взаимной планировки мест подстанций и осветительных щитков, при которых трасса магистральной питающей сети будет чрезмерно удлинена.
Применение чисто магистральной сети целесообразно для сокращения общей протяженности. В месте разветвления линии устанавливают распределительный пункт, от которого могут отходить как магистральные, так и радиальные групповые линии.
При планировке сети возможны различные варианты её выполнения, даже в пределах одной радиально магистральной системы. Когда применение одного варианта не очевидно, тогда необходимо прибегать к технико-экономическому сопоставлению вариантов.
Помещения блока относится к помещениям без повышенной опасности. ПУЭ в этом случае допускает применение напряжения 220В. При этом конструкция светильника должна исключать доступ к лампе без специальных приспособлений (для светильников с лампами накаливания ) и случайное прикосновение к контактным частям ( для светильников с люминесцентными лампами ).
3.2 Определение количества и мест расположения групповых щитков, выбор их типа и компоновка трассы сети
Количество групповых щитков осветительной установки определяют, исходя из размеров здания и рекомендуемой протяжённости групповых линий. Принимают длину четырехпроводных трехфазных групповых линий напряжением 380/220В равной 80 м, напряжением - 220/127 В - 60 м и, соответственно, двухпроводных однофазных - равной 35 м и 25 м. Однофазные групповые линии целесообразно применять в небольших конторах, а также в средних помещениях при установке в них светильников с лампами накаливания мощностью до 200 Вт и с люминесцентными лампами. Применение трехфазных групповых линий экономично в больших помещениях (птичниках, коровниках и т.д.), освещаемых как лампами накаливания, так и газоразрядными лампами.
Ориентировочное количество групповых щитков можно определить по формуле:
,(3.1)
где nщ – рекомендуемое количество групповых щитков, шт;
А, В – длина и ширина здания, м;
r – рекомендуемая протяженность групповой линии, м.
Для уменьшения протяженности и сечения проводов групповой сети щитки устанавливают по возможности в центре электрической нагрузки, координаты которого
; ,(3.2)
где хц, уц – координаты центра электрических нагрузок в координатных осях х, у;
Рi – мощность i-й электрической нагрузки, кВт;
хi, уi – координаты i-й электрической нагрузки в координатных осях х, у.
При выборе мест установки групповых осветительных щитков учитывают также и то, что групповые щитки, предназначенные для управления источниками оптического излучения, устанавливают в местах, удобных для обслуживания: проходах, коридорax и на лестничных клетках. Щитки, имеющие отключающие аппараты, устанавливают на доступной для обслуживания высоте (1,8...2,0 м от пола).
При компоновке внутренних сетей светильники объединяют в группы так, чтобы на одну фазу группы приходилось не более 20 ламп накаливания, ДРЛ, ДРН, ДНаТ и розеток или 50 люминесцентных ламп.