Таким образом, математическая модель гравитационного поля, основанная на принципе искривления геометрического места точек, и физическая модель, основанная на изменении оптических свойств вакуума, дают примерно одинаковые результаты. Но справедливость именно первой из указанных моделей, предсказывающей наличие у пространства свойств, определяемых глобальным масштабным фактором, могла бы быть доказана только в случае обнаружения так называемых Г-shaped форм. Однако, как показывают новейшие исследования (см., например, Astrophysical Journal, 591:599-622, 2003, July 10), в природе не наблюдаются объекты, которые могли бы свидетельствовать именно об искривлении пространства.
В заключение необходимо отметить, что при решении физических задач важно соблюдать аксиомы и правила сразу двух дисциплин – физики и математики. В противном случае маленькие неточности приводят к большим проблемам уже в философии.
Список литературы
1. Abers E., Lee B.W., Gauge Theories, Phys. Rep., 9C, 1 (1973)
2. Aharonov Y., Casher A., Susskind L., Phys. Rev., D5, 988 (1972)
3. Aitchison I.J.R., Relativistic Quantum Mechanics, Macmillan, London, 1972.
4. Altarelli G., Partons in Quantum Mechanics, Phys Rep., 81C, 1 (1982)
5. Arnison G. et al., Intermediate vector boson properties at the CERN super proton synchrotron collider, Geneva, CERN, 1985
6. Bernstein J., Spontaneous Symmetry Breaking, Gauge Theories and All That, Rev. Mod. Phys., 46, 7 (1974)
7. Bilenky S.M., Hosek J., Glashow-Weinberg-Salam Theory of Electro-Weak Interactions and the Neutral Currents, Phys. Rep., 90C, 73 (1982)
8. Bogush A.A., Fedorov F.I., Universal matrix form of first-order relativistic wave equations and generalized Kronecker symbols, Minsk, 1980
9. Bogush A.A., Fedorov F.I., Finite Lorentz transformations in quantum field theory // Rep. Math. Phys., 1977, Vol. 11, № 1
10. J.R.Bond et al, The Sunyaev-Zel’dovich Effect in CMB-Calibrated Theories Applied to the Cosmic Background Imager Anisotropy Power at l>2000, Astroph.Journal, 626:12-30, 2005 June 10
11. Carruthers P., Introduction to Unitary Symmetries, Wieley-Interscience, New York, 1966
12. Catrol Sean, University of Chicago, Astrophys. Journ., 01.09.00
13. Close F.E., An Introduction to Quarks and Partons, Academic Press, London, 1979
14. Cook N., Exotic Propulsion, Jane’s Defense Weekly, 24.07.02
15. Cook N., Anti-gravity propulsion comes out of the closet, Jane’s Defense Weekly, 31.07.02
16. Dokshitzer Y.L., Dyakonov D.I., Trojan S.I., Hard Processes in Quantum Chromodynamics, Phys. Rev., 58C, 269 (1980)
17. Dolgov A.D., Zeldovich Y.B., Cosmology and Elementary Particles, Rev. Mod. Phys., 53, 1 (1981)
18. Ellis J., Grand Unified Theories in Cosmology, Phys. Trans. Roy. Soc., London, A307, 21 (1982)
19. Ellis J., Gaillard M.K., Girardi G., Sorba P., Physics of Intermediate Vector Bosons, Ann. Rev. Nucl. Particle Sci., 32, 443 (1982)
20. Ellis J., Sachrajda C.T., In: Quarks and Leptons, NATO Advanced Study Series, Series B, Physics, Vol. 61, Plenum Press, New York, 1979
21. Faddeev L.D., Popov V.N., Phys. Lett., 1967, Vol. 25B, p. 30
22. Feynman R.P., The Theory of Fundamental Processes, Benjamin, New York, 1962
23. Feynman R.P., Quantum Electrodynamics, Benjamin, New York, 1962
24. Feynman R.P., The Feynman Lectures on Physics, Addison Wesley, Reading, Mass., 1963
25. Feynman R.P., Photon-Hadron Interactions, Benjamin, New York, 1972
26. Feynman R.P., In: Weak and Electromagnetic Interactions at High Energies, Les Houches Session, 29, North-Holland, Amsterdam, 1977
27. Field R.D., In: Quantum Flavordynamics, Quantum Chromodynamics and Unified Theories, NATO Advanced Study Series, Series B, Physics, Vol. 54, Plenum Press, New York, 1979
28. Fradkin E.S., Tyutin I.V., Renormalizible theory of massive vector particles // Riv. Nuovo Cimento, 1974, Vol. 4, № 1
29. Fritzch H., Minkowski P., Flavordynamics of Quarks and Leptons, Phys. Rep., 73C, 67 (1981)
30. Georgi H., Glashow S.L., Unity of all elementary-particle forces, Phys. Rev. Lett., 1974, Vol. 32, № 8
31. Georgi H., Lie Algebras in Particle Physics, Benjamin-Cummings, Reading, Mass., 1982
32. Gilman F.J., Photoproduction and Electroproduction, Phys. Rep., 4C, 95 (1972)
33. Glashow S.L., Partial symmetries of weak interactions, Nucl. Phys., 1961, Vol. 22, № 3
34. Glashow S.L., Illiopoulos I., Maiani L., Weak interactions with lepton-hadron symmetry, Phys. Rev. Series D, 1970, Vol. 2, № 7
35. Goldstein H., Classical Mechanics, Addison Wesley, Reading, Mass., 1977
36. Goldstone I., Field theories with “superconductor” solutions, Nuovo Cimento, 1961, Vol. 19, № 1
37. Green M.B., Surv. High Energy Physics, 3, 127 (1983)
38. Green M.B., Gross D., eds., Unified String Theories, World Scientific, Singapore, 1986
39. Green M.B., Schwarz J.H., Witten E., Superstring Theory, Vol. 1,2, Cambridge University Press, Cambridge, 1986
40. Greene B., The Elegant Universe. Superstrings, Hidden Dimensions, and the Quest for Ultimate Theory, Vintage Books, A Division of Random House, Inc., New York, 1999
41. Halzen Francis, Martin Alan D., Quarks and Leptons. An Introductory Course in Modern Particle Physics, 1983
42. Higgs P.W., Broken symmetries, massless particles and gauge fields, Phys. Lett., Series B, 1964, Vol. 12, № 2
43. Kac V., Infinite Dimensional Lie Algebras, Bierkhauser, Boston, 1983
44. Kaku M., Introduction to Superstrings, Springer-Verlag, New York, 1988
45. Kim J.E., Langacker P., Levine M., Williams H.H., A Theoretical and Experimental Review of Neutral Currents, Rev. Mod. Phys., 53, 211 (1981)