На боковых поверхностях дисков 1 и 2 кольцами постепенно возрастающего диаметра располагаются лопатки реактивных ступеней. Пар в турбину подводится по трубам 3 и далее через отверстия в дисках 1 и 2 направляется к центральной камере. Отсюда он течет к периферии через каналы лопаток 6 и 7, укрепленных на обоих дисках. В отличие от обычной конструкции в турбине Юнгстрем нет неподвижных сопловых решеток или направляющих лопаток. Оба диска вращаются во встречных направлениях, так что мощность, развиваемая турбиной, должна передаваться валами 4 и 5. Принцип встречного вращения роторов позволяет выполнить турбину очень компактной и экономичной.
С начала 90-х годов развитие паровых турбин идет исключительно быстрым темпом. Это развитие в значительной степени определилось таким же быстрым параллельным развитием электрических машин и широким внедрением электрической энергии в промышленность. Экономичность паровой турбины и мощность ее в одном агрегате достигли высоких значений. По своей мощности турбины далеко превзошли мощности всех без исключения других типов двигателей. Имеются турбины мощностью 500 МВт, связанные с генератором электрического тока, причем доказана возможность выполнения еще более мощных агрегатов, по крайней мере до 1000 МВт.
В развитии парового турбостроения можно отметить несколько этапов, которые сказались на конструктивном выполнении турбин, построенных в различные периоды времени.
В период до империалистической войны 1914 г. уровень знаний в области работы металлов при высоких температурах был недостаточен для применения пара высоких давлений и температуры. Поэтому до 1914 г. паровые турбины строились преимущественно для работы паром умеренного давления (12 – 16 бар), с температурой до 350 °С.
В отношении повышения мощности единичного агрегата уже в начальный период развития паровых турбин были достигнуты большие успехи.
В 1915 г. мощность отдельных турбин достигала уже 20 МВт. В послевоенный период, начиная с 1918–1919 гг., продолжает сохраняться тенденция к повышению мощности. Однако в дальнейшем конструкторами турбин преследовалась задача повышения не только мощности агрегата, но и числа оборотов турбин большой мощности при выполнении их с одним генератором электрического тока.
Наиболее мощной быстроходной турбиной в мире в свое время (1937 г.) была турбина Ленинградского металлического завода, построенная на 100 МВт при 3000 об/мин.
В период до империалистической войны 1914 г. турбостроительные заводы в большинстве случаев выпускали турбины с ограниченным числом ступеней, размещенных в одном корпусе турбины. Это позволило выполнять турбину очень компактными и относительно дешевыми. После войны 1914 г. напряженность в топливоснабжении, которую испытывало большинство стран, потребовала всемерного повышения экономичности турбинных агрегатов.
Было установлено, что максимального КПД турбины можно достигнуть, применяя малые тепловые перепады в каждой ступени турбины и соответственно строя турбины с большим числом ступеней. В связи с этой тенденцией возникли конструкции турбин, которые даже при умеренных параметрах свежего пара имели чрезвычайно большое число ступеней, достигающее 50 – 60.
Большое число ступеней приводило к необходимости создавать турбины с несколькими корпусами даже в том случае, когда турбина соединялась с одним электрическим генератором.
Таким образом, стали распространяться двух- и трехкорпусные турбины, которые, отличаясь высокой экономичностью, были очень дорогими и громоздкими.
В последующем развитии турбостроения в этом вопросе также наметилось известное отступление в сторону упрощения конструкции турбины и сокращения числа ее ступеней. Турбины мощностью до 50 МВт при 3000 об/мин довольно долго строились только двухкорпусными. Новейшие конденсационные турбины такой мощности, выпускаемые передовыми заводами, строятся однокорпусными.
Одновременно с конструктивными усовершенствованиями турбин умеренного давления (в 20 – 30 бар) в период с 1920 по 1940 г. стали распространяться более экономичные установки высокого давления, достигающего 120 – 170 бар.
Применение пара высоких параметров, существенно повышающее экономичность турбинной установки, потребовало новых решений в области конструирования паровых турбин. Значительные успехи были достигнуты в деле применения легированных сталей, имеющих достаточно высокий предел текучести и малые скорости ползучести при температурах 500 – 550° С.
Наряду с развитием конденсационных турбин уже в начале этого столетия начинают применяться установки для комбинированной выработки электрической энергии и тепла, которые потребовали построения турбин с противодавлением и промежуточным отбором пара. Первая турбина с регулированием постоянства давления отбираемого пара была построена в 1907 г.
Условия капиталистического хозяйства препятствуют, однако, использованию всех преимуществ комбинированной выработки тепла и электрической энергии. В самом деле, емкость теплового потребления за границей в большинстве случаев ограничивается потреблением предприятия, на котором устанавливается турбина. Поэтому турбины, допускающие использование тепла отработавшего пара, за границей чаще всего строятся на небольшие мощности (до 10 – 12 МВт) и рассчитываются на обеспечение теплом и электрической энергией лишь индивидуального промышленного предприятия. Характерно, что наиболее крупные (25 МВт, а затем 50 и 100 МВт) турбины с отбором пара были построены в Советском Союзе, так как плановое развитие народного хозяйства создает благоприятные условия для комбинированной выработки тепла и электрической энергии.
В послевоенный период во всех технически развитых европейских странах, а также в США наблюдается все ускоряющееся развитие энергетики, которое приводит ко все большему росту мощности энергетических агрегатов. Одновременно сохраняется тенденция применения все более высоких начальных параметров пара.
Конденсационные одновальные турбины достигают мощности 500 – 800 МВт, а при двухвальном исполнении уже построены установки мощностью 1000 МВт.
По мере увеличения мощностей целесообразным являлось и повышение начальных параметров пара, которые последовательно выбирались на уровне 90, 130, 170, 250 и, наконец, 350 бар, при этом повышались также и начальные температуры, которые составили 500, 535, 565, 590, а в отдельных случаях до 650° С. Следует иметь в виду, что при температурах, превышающих 565° С, приходится применять очень дорогие и менее изученные стали аустенитного класса. Это привело к тому, что в последнее время наблюдается тенденция к некоторому отступлению в область температур, исключающих необходимость использования аустенитных сталей, т.е. температур на уровне 540° С.
Большое значение для развития турбин малой мощности и, в особенности для развития судовых паровых турбин имели успехи, достигнутые в 1915–1920 гг. в области построения редукторов. До этого времени судовые турбины выполнялись на число оборотов, равное числу оборотов гребных винтов, т.е. 300 – 500 об/мин, что снижало экономичность установки и приводило к большим габаритам и весам турбин.
С того времени, когда в работе зубчатых редукторов были достигнуты полная надежность и высокая экономичность, судовые турбины снабжаются редукторными приводами и выполняются на повышенное число оборотов, которое соответствует наивыгоднейшим условиям работы турбины.
Для стационарных турбин малой мощности также оказалось целесообразным применение редукторной передачи между турбиной и генератором. Наибольшее число оборотов, возможное при непосредственном соединении валов турбины и генератора 50-периодного переменного тока, составляет 3000 об/мин. При мощностях ниже 2,5 МВт это число оборотов невыгодно для конденсационной турбины. С развитием редукторостроения оказалось возможным выполнять турбины на более высокие числа оборотов (5000–10000 обIмин), что позволило повысить экономичность турбин небольшой мощности, а главное уменьшить их размеры и упростить конструкцию.
Типовая конструкция современной паровой турбины
При проектировании паровой турбины учитывают ряд предъявляемых к ней требований:
– надежность и безаварийность работы;
– высокая тепловая экономичность;
– высокая равномерность вращения и быстроходность, допускающая использование быстроходных электрогенераторов с возможностью их непосредственного соединения с валом двигателя;
– возможность получения в двигателе любой необходимой единичной мощности;
– возможность автоматизации работы всей установки;
– простота обслуживания установки;
– компактность двигателя и его относительная дешевизна;
– возможность работы по замкнутому циклу.
Рассмотрим конструкцию типичной современной активной турбины на примере турбины высокого давления Ленинградского металлического завода. Мощность этой турбины 50 тыс. кВт при 3000 об/мин. Турбина работает паром с начальным давлением 88 бар при температуре 535° С.
Первые 19 дисков умеренного диаметра выполнены за одно целое с валом турбины. Последующие три диска посажены с натягом на вал. На ободах каждого диска укреплены рабочие лопатки. Диски разделены неподвижными промежуточными диафрагмами. В каждой диафрагме размещена неподвижная сопловая решетка, в которой поток пара ускоряется и приобретает необходимое направление для входа в каналы рабочей решетки, образованной рабочими лопатками. Постепенное увеличение от ступени к ступени высоты сопловых решеток и рабочих лопаток объясняется тем, что по мере расширения пара объем его возрастает. Это требует постепенного увеличения проходных сечений проточной части. Сопловые решетки первой регулирующей ступени укреплены в пароподводящих патрубках, которые вварены в корпус турбины. Пар к соплам первой регулирующей ступени подводится через четыре регулирующих клапана, два из которых расположены на верхней половине корпуса, а два – по бокам нижней части корпуса. Часть корпуса, охватывающая ступени высокого давления, выполнена в виде стальной отливки. Ступени низкого давления располагаются в сварной части корпуса. Выходной патрубок турбины также сварен из листвой стали, и при помощи сварки соединяется с конденсатором. За счет охлаждения отработавшего в турбине пара в конденсаторе поддерживается давление ниже атмосферного. Обычно это давление составляет 0,03 – 0,06 бар. В корпусе турбины предусмотрено несколько патрубков для отбора пара из промежуточных ступеней турбины. Эти отборы используются для подогрева питательной воды, подаваемой в паровой котел.
При изменении нагрузки оказывается необходимым изменять расход протекающего через турбину пара. Это достигается соответствующим открытием регулирующих клапанов. Благодаря тому, что клапаны закрываются и открываются последовательно, часть пара, проходящая через полностью открытые клапаны, не подвергается мятию и поступает к соплам первой ступени с полным начальным давлением. Лишь та доля пара, которая проходит через частично открытый клапан, дросселируется в клапане и подходит к своей сопловой группе с пониженным давлением. Способ управления впуском пара в турбину, при котором доступ пара к сопловым группам открывается последовательно, называется сопловым парораспределением. Первая ступень, получающая в зависимости от нагрузки турбины пар из различного числа сопловых групп, называется регулирующей ступенью. Наряду с таким способом парораспределения существует также дроссельный способ подвода пара, отличающийся тем, что все количество подводимого к турбине пара проходит через общий регулирующий клапан. При частичных нагрузках турбины пар подвергается мятию вследствие частичного закрытия дроссельного регулирующего клапана.