Поверхностная лазерная обработка

Титан-сапфировые лазеры. Хорошо перестраиваемый по длине волны инфракарасный лазер, используемый для генерации сверхкоротких импульсов и в спектроскопии

Лазеры на эрбиевом стекле, изготавливаются из специального оптоволокна и используются как усилители в оптических линиях связи.

Микрочиповые лазеры. Компактные интегрированные импульсные твердотельные лазеры, наиболее широко используются в сверхъярких лазерных указках

 Полупроводниковые лазерные диоды

Самый распространенный тип лазеров: используются в лазерных указках, лазерных принтерах, телекоммуникациях и оптических носителях информации(CD/DVD). Мощные лазерные диоды используются для накачки современных твердотельных лазеров.

Лазеры с внешним резонатором (External-cavity lasers), используются для создания этиловом

Лазеры с квантовым каскадом спирте или этиленгликоле. Позволяют осуществлять пререстройку длины волны излучения в диапазоне от 350 нм до 850 нм (в зависимости от типа красителя). Применение - спектроскопия, медицина (в т.ч. фотодинамическая терапия), фотохимия. высокоэнергетических импульсов

Лазеры на красителях Тип лазеров, использующий в качестве активной среды раствор органических красителей

Лазеры на свободных электронах


Расшифровка обозначений

YAG — алюмо-иттриевый гранат

KGW — калий-гадолиниевый вольфрамат

YLF — фторид иттрия-лития

















2. ПОВЕРХНОСТНАЯ ЛАЗЕРНАЯ ОБРАБОТКА

На режимах, не вызывающих разрушения материала, реализу­ются различные процессы лазерной поверхностной обработки. В основе этих процессов лежат необычные структурные и фазовые изменения в материале, возникающие вследствие сверхвысоких скоростей его нагрева и последующего охлаждения в условиях ла­зерного облучения. Важную роль при этом играют возможность насыщения поверхностного слоя элементами окружающей среды, рост плотности дислокаций в зоне облучения и другие эффекты.


2.1. Виды поверхностной лазерной обработки

В зависимости от степени развития указанных явлений в материале различают несколько видов поверхностной лазерной обработки (табл. 1), возможность реализации которых определяется основном уровнем плотности мощности излучения.        

Упрочнение без фазового перехода предполагает структурные изменения в материале при уровне плотности мощности излучения, не приводящем к расплавлению облученной зоны. При этом виде обработки сохраняется исходная шероховатость обрабатывающей поверхности. Быстрый локальный нагрев поверхности и последую­щее охлаждение за счет теплоотвода в массив материала приводят к образованию в поверхностном слое стали специфической высоко-дисперсной, слаботравящейся, дезориентированной в пространстве структуры, имеющей микротвердость, в 2—4 раза превышающую микротвердость основы (матрицы). При малых плотностях мощности, скоростях нагрева и охлажде­ния, не превышающих критических значений, может быть реали­зован режим отжига (отпуска) ранее закаленных материалов. Не­обходимость такой операции возникает, например, при изготовле­нии листовых пружин, отбортовке краев обоймы подшипника и т. п. Упрочнение с фазовым переходом предполагает плавление ма­териала в облученной зоне. Этот вид упрочнения требует более вы­сокой плотности мощности излучения, что позволяет добиться зна­чительных глубин упрочненного слоя. Поверхность этого слоя име­ет характерное для закалки из жидкого состоянии дендритное строение. Затем идет ЗТВ, а между ней и материалом основы рас­положена переходная зона. При данном виде поверхностной обра­ботки, естественно, нарушается исходная шероховатость,    что требует введения в технологический процесс изготовления изделия до­полнительной финишной операции (шлифования).

При реализации рассмотренных видов обработки не требуется специальной среды, процесс проводится на воздухе. При этом воз­можна частичная диффузия составляющих воздуха в облученную зону.

При следующем виде поверхностной обработки — лазерном ле­гировании для насыщения поверхностного слоя легирующими эле­ментами требуется специальная среда (газообразная, жидкостная, твердая). В результате на обрабатываемой поверхности образует­ся новый сплав, отличный по составу и структуре от матричного материала.




Виды поверхностной лазерной обработки                                                            Таблица 1

Вид  обработки

плотность мощности

1 см 2

 

 

скорость охлаждения

С

 

 

глубина ЗТВ,мм

Упрочнение без фазового

перехода

103-104

104-105

0,2-0,5

Лазерный отжиг (отпуск)

102-103

-

0.05-0,1

упрочнение с фазовым

переходом

104-105

105-106

1,2- З.0

лазерное легирование

104-106

104-106

 0,2-2,0

Лазерная      наплавка (напыление)

104-106

104-106

0,02-3,0

Амортизация поверхности

106-108

104106

0,01-0,05

шоковое упрочнение

104-106


104-106

0,02-0,2


Лазерная наплавка (напыление) позволяет нанести па поверх­ность обрабатываемого материала слой другого материала, улуч­шающий эксплуатационные характеристики основного.

Новая разновидность лазерного упрочнения — аморфизация поверхности сплава в условиях скоростного облучения (очень ко­ротким импульсом или сканирующим лучом). Сверхвысокие скоро­сти теплоотвода, достигаемые при этом, обеспечивают своеобраз­ное «замораживание» расплава, образование металлических сте­кол (метгласса) или аморфного состояния поверхностного слоя. В результате достигаются высокая твердость, коррозионная стой­кость, улучшенные магнитные характеристики и другие специфи­ческие свойства материала. Процесс лазерной аморфизации можно осуществить при обработке сплавов специальных составов (в том числе и на основе железа), а также других материалов, предвари­тельно покрытых специальными составами, которые самостоятель­но или совместно с матричным материалом склонны к аморфиза­ции.

Шоковое упрочнение имеет место при воздействии на материал мощного импульса излучения наносскундной длительности. Пред­варительно на материал наносится тонкий слой легкоплавкого ме­талла. Воздействие мощного импульса вызывает взрывообразное испарение легкоплавкого металла, что приводит к возникновению импульса отдачи, в свою очередь генерирующего мощную удар­ную волну в материале. В результате происходит пластическое деформирование материала, а при нагреве поверхностного слоя-— и соответствующие изменения в структуре. Первые четыре вида поверхностной лазерной обработки к на­стоящему времени получили наибольшее распространение. Для практической реализации аморфизации и шокового упрочнения требуются дополнительные исследования. Все эти виды обработки можно осуществить с помощью как импульсного, так и непрерыв­ного излучения, причем упрочнение без фазового перехода более пригодно для прецизионной обработки поверхностей сравнительно небольших размеров, производительность процесса ограничивает­ся сравнительно невысокой частотой следования импульсов выпускаемого оборудования. Непрерывное излучение позволяет произ­водить обработку с высокой производительностью поверхностей больших размеров.


2.2. Обработка импульсным излучением

При фокусировании излучения сферической оптикой облученная. зона в плане имеет вид круга диаметром D. Тогда в случае однокоординатной (линейной) обработки скорость упрочнения оп­ределяется из выражения

        

, где   D длина участка упрочнения; t -время обработки;    п -число импульсов; K0 — коэффициент перекрытия; f — частота следования  импульсов.

При двух координатной обработке одними из основных пара­метров является шаг s относительного перемещения по оси х и шаг s' перемещения по оси у. От соотношения этих шагов и диа­метра зоны облучения зависят степень заполнения (упаковки) профиля, эффективность процесса. Обработка может быть реали­зована по одной из четырех схем (табл. 2). Эффективность обра­ботки по схеме характеризуется коэффициентом использования импульсов Ки, который определяется из соотношения

где F' — площадь облученной поверхности.

Производительность процесса двухкоординатной обработки

Это выражение может быть использовано для ориентировочной оценки производительности, так как реальные условия вносят свои коррективы. Например, при D = 4 мм, Ки—0,74 (см. табл. 4, схе­ма 3)    и  f =1    Гц    производительность    упрочнения    составит  550 мм2/мин.

К технологическим характеристикам упрочнения импульсным излучением относятся размерные параметры (диаметр единичной зоны упрочнения, ширина линейного упрочнения, глубина упроч­ненной зоны), степень упрочнения (микротвердость), шерохова­тость обработанной поверхности и др. Па эти характеристики влия­ют вид обрабатываемого материала, схема обработки, энергети­ческие параметры облучения, эффективность поглощения излучения,  среда и т. п. Так, с увеличением плотности мощности излучения q возраста­ет - как ширина В (диаметр единичного пятна D), так и глубина И зоны линейного упрочнения. Однако для каждого вида материалов существует некоторое пороговое значение q, после которого начинается разрушение (эрозия) материала.

        Схемы поверхностной обработки импульсным излучением          Таблица 2

Номер схемы

схема

характеристика

1

Ки =1

Ки =0,78

s=s'=D

2

Ки =0,7

Ки =0,46

s=s'=0,7D

3

Ки =0,74

s=0,8D

s'=0,74D


4

Ки =0,8

Ки =0,78

s=s'=0,8D

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать