Применение углеродных нанотрубок в энергетике

Цуньшень Ванг (Xueshen Wang) и его коллеги использовали смесь веществ, которые многим известны отнюдь не в качестве химреактивов: свои рекордные нанотрубки китайцы вырастили в атмосфере паров спирта и воды. Правда, эти вещества находились в несколько нестандартных по алкогольным меркам пропорциях: 4 части спирта на 1 часть воды.

Кроме того, китайские ученые использовали водород, продуваемый через специальный реактор, а также сверхтонкий порошок железа и молибдена – это были зерна для затравки реакции. Также пригодилась им пленка из обычных, меньшей длины, нанотрубок, – для эффективного удаления «мусора» в виде растущих в неправильных направлениях углеродных цилиндров вкупе с аморфным и потому неинтересным углеродом.[11]

2. Электронные свойства нанотрубок

2.1 Электронные свойства графитовой плоскости

·          обратная решётка, первая зона Бриллюэна

Все точки K первой зоны Бриллюэна отстоят друг от друга на вектор трансляции обратной решётки, поэтому все они на самом деле эквивалентны. Аналогично, эквивалентны все точки K'.

·          спектр в приближении сильной связи

·          спектр углеродной плоскости в первой зоне Бриллюэна. Показана только часть E(k)>0, часть E(k)<0 получается отражением в плоскости kx, ky.

·          дираковские точки

Графит — полуметалл, что видно невооружённым глазом по характеру отражения света. Можно убедиться, что электроны p-орбиталей полностью заполняют первую зону Бриллюэна. Таким образом, оказывается, что уровень Ферми графитовой плоскости проходит точно по дираковским точкам, т.о. вся поверхность Ферми (точнее, линия в двумерном случае) вырождается в две неэквивалентные точки.

Если энергия электронов мало отличается от энергии Ферми, то можно заменить истинный спектр электронов вблизи дираковской точки на простой конический, такой же как спектр безмассовой частицы, подчиняющейся уравнению Дирака в 2+1 измерениях.

·          SU(4) симметрия

 

2.2 Экситоны и биэкситоны в нанотрубках

Эксито́н (лат. excito — «возбуждаю»)— водородоподобная квазичастица, представляющая собой электронное возбуждение в диэлектрике или полупроводнике, мигрирующее по кристаллу и не связанное с переносом электрического заряда и массы.

Хотя экситон состоит из электрона и дырки, его следует считать самостоятельной элементарной (не сводимой) частицей в случаях, когда энергия взаимодействия электрона и дырки имеет тот же порядок, что и энергия их движения, а энергия взаимодействия между двумя экситонами мала по сравнению с энергией каждого из них. Экситон можно считать элементарной квазичастицей в тех явлениях, в которых он выступает как целое образование, не подвергающееся воздействиям, способным его разрушить. [14]

Биэкситон— связаное состояние двух экситонов. Представляет собой, фактически, экситонную молекулу.

Впервые идея о возможности образования экситонной молекулы и некоторые её свойства были описаны независимо С. А. Москаленко и М. А. Лампертом.

Образование биэкситона проявляется в оптических спектрах поглощения в виде дискретных полос, сходящихся в коротковолновую сторону по водородоподобному закону. Из такого строения спектров следует, что возможно образование не только основного, но и возбуждённых состояний биэкситонов.

Стабильность биэкситона должна зависеть от энергии связи самого экситона, отношения эффективных масс электронов и дырок и их анизотропии.

Энергия образования биэкситона меньше удвоенной энергии экситона на величину энергии связи биэкситона. [15]

2.3 Ток в нанотрубках

Ученые из университета штата Иллинойс доказали, что углеродные нанотрубки пропускают большое количество электрического тока.

По сообщению журнала «NanoWeek», продемонстрировать это помогло подведение полупроводниковых углеродных нанотрубок к лавинообразному процессу, в котором свободные электроны образуются в значительном количестве.

До этого было известно, что одностенные углеродные нанотрубки могут пропускать токи плотностью до 100 раз выше, чем лучшие металлы-проводники (например, медь). Однако исследования, проводимые под руководством профессора Эрика Попа, показали, что полупроводниковые нанотрубки могут пропускать ток вдвое более высокой плотности.

В работе, результаты которой опубликованы в одном из научных изданий, авторы определили, что в напряженных электрических полях высокоэнергетические электроны и дырки могут создавать дополнительные электрон-дырочные пары, что приводит к лавинообразному процессу роста потока свободных носителей. При этом ток быстро нарастает до тех пор, пока нанотрубка не разрушается.

По мнению профессора Попа, крутое нарастание тока определяется всплеском лавинообразной ионизации – явлением, встречающимся в определенных видах полупроводниковых диодов и транзисторов в напряженных электрических полях, однако в нанотрубках до этого не наблюдавшимся.

Для исследования эффектов, связанных с протеканием тока, ученые вырастили одностенные полупроводниковые нанотрубки, используя метод химического напыления испарением. Для измерений использовали палладиевые электрические контакты. Эксперименты проводили в бескислородной среде.

Было обнаружено, что при увеличении напряженности электрического поля нарастание величины тока, проходящего через нанотрубки, в районе 25 микроампер замедляется, а затем резко возрастает с увеличением поля. Ученые довели ток через нанотрубки до значений порядка 40 микроампер, что вдвое превышает известные результаты.

«Лавинный процесс, который не наблюдается в металлических углеродных нанотрубках, дает новые возможности трубкам с полупроводниковыми свойствами, – сообщает Эрик Поп. – Результаты экспериментов говорят о том, что на основе полупроводниковых одностенных нанотрубок могут быть созданы устройства с высоконелинейными характеристиками включения». [16]


2.4 Сверхпроводимость нанотрубок

Физики из Японии доказали, что многостенные углеродные трубки с «полностью соединёнными концами» могут быть сверхпроводящими даже при температурах не ниже 12 К, что в 30 раз превышает температуру, необходимую для одностенных углеродных трубок. Открытие было сделано группой учёных под руководством г-на Юньджи Харуяма (Junji Haruyama) из университета Aoyama Gakuin University в г. Канагава (Kanagawa). Сверхпроводящие нанотрубки можно было бы использовать для изучения фундаментальных одномерных квантовых эффектов, а также они могли бы найти практическое применение в молекулярных квантовых вычислениях.

Сверхпроводимость – это полное отсутствие электрического сопротивления, которое наблюдается в определённых материалах при их охлаждении до температуры перехода в сверхпроводящее состояние (Tc). Физики утверждают, что сверхпроводимость вызвана тем, что электроны преодолевают взаимное кулоновское отталкивание и образуют «пары Купера». Согласно теории низкотемпературной сверхпроводимости Бардина-Купера-Шриффера (Bardeen-Cooper-Schrieffer - BCS), электроны удерживаются вместе благодаря взаимодействию с фононами – колебаниями кристаллической решётки в материале.

Однако одномерные проводники, такие как углеродные трубки (свёрнутые листы графита диаметром всего несколько нанометров), обычно не являются сверхпроводящими. Одна из причин этого – наличие так называемых жидких состояний Томонага-Луттингера (Tomonaga-Luttinger liquid - TLL) в материале, которые вызывают отталкивание электронов друг от друга и таким образом приводят к разрушению пар Купера.

Г-н Харуяма и его коллеги создали систему, в которой имеется сверхпроводящая фаза, которая конкурирует с фазой TLL и даже превосходит её – что, до сих пор считалось невозможным. Система состоит из множества многостенных углеродных нанотрубок, каждая из которых состоит из серии концентрических нанотрубчатых оболочек. Выполненные из металла электрические контакты присоединены к трубкам таким образом, что они касаются верхней части всех оболочек. Обычные же соединения (контакты) касаются только самой верхней оболочки трубки и вдоль всей её длины. Японские учёные создали нанотрубки, в которых почти все оболочки электрически активны. Они открыли, что нанотрубки с соединёнными концами теряют сопротивление при температуре ниже 12 К. Это происходит потому, что состояния TLL подавляются настолько, что может возникнуть состояние сверхпроводимости. Кроме того, температура Tc зависит от количества электрически активных оболочек, и теперь физики пытаются увеличить их число, сделав большее количество или все оболочки активными. [17]

 

2.5 Преобразователи энергии

Механические преобразователи на основе нанопроводов могут получать энергию за счет вибрации, возникающей при ходьбе, сердцебиении, течении жидкостей или газов. Исследователи Georgia Institute of Technology предложили простой и недорогой способ генерации электрического тока при помощи пьезоэлектрических нанопроводов из оксида цинка, выращенных на текстильных волокнах. Одежда из такого материала будет вырабатывать электричество за счет трения, возникающего при ее эксплуатации.

Изображения чудо-волокон представлены на рисунке 5. Кевларовая сердцевина была покрыта нанопроводами ZnO в процессе гидротермального синтеза. В качестве связующего компонента использовался ТЭОС. Диаметр проводов составил 50-200 нм, длина – до 3.5 мкм. Нанопровода растут из пленки ZnO, которая выступает в роли общего электрода. Волокно оказалось очень гибким и прочным – при сворачивании его в петлю диаметром 1 мм не было замечено никаких повреждений.

Для получения электричества была разработана следующая схема (рис. 6). Два волокна были скручены в спираль, причем одно из них было покрыто слоем золота. Оно выступало в роли катода наногенератора. При трении волокон между концами цепи возникала разность потенциалов 1-3 мВ. Сила тока в цепи лимитируется сопротивлением волокон. Путем снижения сопротивления удалось добиться силы тока 4 нА. Объединение волокон в нити, из которых потом можно изготовить ткань, должно привести к увеличению производительности устройства. Ожидается, что таким образом будет достигнута мощность 20-80 мВт на квадратный метр такой ткани. [18]

3. Применение нанотрубок в энергетике

3.1 Использование наноматериалов в атомной энергетике

Технологии, основанные на качественном изменении свойств материалов при переходе к нанометровому размеру, стали разрабатываться в атомной отрасли в середине XX века, практически одновременно с первым испытанием советского ядерного оружия. Хотя в то время приставка «нано» еще не использовалась, уже в ходе начатых в 1950 г. работ были получены ультрадисперсные порошки, используемые в промышленных технологиях разделения изотопов урана; в 1965 г. коллективу разработчиков была присуждена Ленинская премия. В 1962 г. академику А.А. Бочвару было поручено создание технологий получения сверхпроводников, и в 1970–1980-х годах многие сотрудники отрасли были удостоены государственных наград, премий и почетных званий за соответствующие работы.

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать