Принцип Кирлиан-эффекта (свечение предметов в электромагнитном поле)
Оглавление
Введение
1. Аппаратура для Кирлиан-эффекта
1.1 Суть эффекта Кирлиан
1.2 Искровой генератор
1.3 Катушка прерывателя
1.4 Резонатор
1.5 Дисковая обкладка
2. Современные схемы Кирлиан – прибора и компоненты для их сборки
2.1 Схема №1
2.2 Схема № 2
2.3 Схема № 3
2.4 Осциллятор и двухкаскадный усилитель
2.5 Электроды
3. Особенности использования
3.1 Влияние напряжения и частоты
3.2 Контактная фотография
3.3 Фотография через прозрачный электрод
3.4 Меры безопасности
4 Применение Кирлиан - прибора
4.1 Исследование твердых не живых предметов
4.2 Исследование жидкостей
4.3 Исследование органических материалов
5 Проблемы применения
6 Вывод
Принцип Кирлиан - эффекта (свечение предметов в электромагнитном поле) было открыто еще в 1777 году профессором Лихтенбергом: изучая электрические разряды на покрытой порошком поверхности изолятора, наблюдал характерное свечение. Спустя почти столетие это свечение было зафиксировано на фотопластинке и получило название "фигур Лихтенберга". В России в середине прошлого века известный по тем временам учёный Наркевич-Иодко, поверив крестьянину, видевшему разноцветные света вокруг людей невооружёнными никаким прибором глазами, изобрёл очень простое электрическое устройство, позволившее запечатлеть это свечение на фотопластинке. 1882 год стал для учёного годом признания его открытия. Свой способ фотографирования Наркевич-Иодко назвал электрографией. О нём писали как об учёном, опередившем своё время. Демонстрационные опыты Николы Тесла в 1891-1900 годах наглядно показали возможность газоразрядной визуализации живых организмов. Тесла получал фотографии разрядов обычной фотосъёмкой. Фотоаппарат снимал в токах высокой частоты предметы и тела. Но сложность использовавшейся тогда аппаратуры для получения электрографических снимков препятствовала широкому распространению метода. Все говорили о фиксации неизвестных науке видов излучения. С 1905 года, под натиском новых идей в физике и революционной ситуаций в обществе, эти работы были надолго забыты. И только в тридцатые годы российские изобретатели - супруги Кирлиан заново подошли к этим исследованиям. Десять лет супруги Кирлиан в домашней лаборатории создавали и усовершенствовали прибор позволяющий производить исследования свечения объектов в электромагнитном поле (в качестве источника высоковольтного высокочастотного напряжения был применен видоизменённый резонанс-трансформатор Тесла, работающий в импульсном режиме), делали тысячи высокочастотных снимков изучая механизмы и возможности неведомого прежде явления.
О приборе супруг Кирлиан и об аналогичных приборах будет идти речь в данной курсовой работе.
Целью данной курсовой работы является отбор и систематизация теоретического материала по основным принципам работы и сбора оборудования для наблюдения Кирлиан - эффекта.
Объектом исследования является различные схемы Кирлиан - оборудования и процесс их сборки.
Предметом исследования выступают некоторые аспекты применения Кирлиан - прибора.
Поставленная цель актуализируется в следующих задачах:
1. Проанализировать научную, научно-популярную и учебно-методическую литературу по теме исследования и выявить существующие разновидности Кирлиан - приборов.
2. Проанализировать способы сборки и применения Кирлиан приборов.
Для решения поставленных задач использовались следующие методы исследования:
- анализ литературы по рассматриваемой работе;
- систематизация отобранных материалов.
Практическая значимость данной работы состоит в том, что рассмотренные материалы могут использоваться на внеурочных (в т. ч. кружковых) занятиях по радиоэлектронике, а рассмотренные приборы наверняка являются будущим медицины.
1 АППАРАТУРА ДЛЯ КИРЛИАН-ЭФФЕКТА
1.1 Суть эффекта Кирлиан
Принцип работы Кирлиан-прибора очень прост. На один электрод подаётся высокое переменное напряжение с высокой частотой - от 1 до 40 киловольт при 200-15000 Герц. Другим электродом служит сам объект. Если объектом служит человек, то он ни в коем случае не заземляется. Если объект представляет собой предмет неживой природы, то его необходимо заземлить. Оба электрода разделены между собой изолятором и тонким слоем воздуха, молекулы которого подвергаются диссоциации под действием сильного магнитного поля, возникающего между электродом и объектом. В этом слое воздуха, находящемся между объектом и электродом, т.е. в сильном магнитном поле, происходит три процесса.
Первый процесс заключается в поляризации и разрыве молекул воздуха, который на 78 процентов состоит из молекулярного азота (N2). Этот процесс приводит к образованию атомарного азота, который в больших концентрациях вреден для человеческого организма. Поэтому с кирлиан-прибором необходимо работать в хорошо проветриваемом помещении.
Второй процесс - это процесс получения электронами молекул воздуха (N2 - 78%, O2 - 21%) достаточного количества энергии, необходимой для отрыва от молекулы. Эти освободившиеся электроны, наряду с ионами, образуют некий небольшой ток между объектом и электродом, который впрочем, при правильной регулировке рабочего напряжения неопасен для человека. Результаты второго процесса видны в форме газового разряда по каналам так называемой короны, которая образуется вокруг объекта. Форма короны свечения, её плотность, вкрапления и т.п. определяются собственным магнитным полем объекта.
Третий процесс - это получение электронами молекул воздуха энергии, которой недостаточно для отрыва от молекулы. При этом происходит переход электронов молекул воздуха на более высшие атомарные уровни и обратно. При этом скачке электрона происходит излучение кванта света. Величина скачка электрона молекулы воздуха зависит от собственного магнитного поля исследуемого объекта. Поэтому в различных точках поля, окружающего объект, электроны получают разные импульсы, т.е. перескакивают на разные атомарные уровни, что приводит к испусканию квантов света разной длины. Последний факт регистрируется человеческим глазом или цветной фотобумагой в качестве различных цветов, которые в зависимости от объекта могут окрашивать корону свечения в разные цвета.
1.2 Искровой генератор
Аппаратура, применяемая в первоначальных опытах, состояла из генератора ТВЧ, резонатора, катушки прерывателя (рис.1).
Генератор ТВЧ превращает опасный для человека электрический ток в безопасный. Такой генератор должен работать с частотой приблизительно в 75 — 200 тыс. колебаний в секунду; колебания импульсные, резко затухающие. Каждый импульс не должен нести большой энергии, чтобы она не могла оказывать на организм теплового или раздражающего действия. Его длительность— 50—100 миллионных долей секунды.
Рис. 1 Искровой генератор:
1-— конденсатор на 4—10 мф, 600 вольт; 2 и 3—конденсаторы на 0,25 мф, 1500 в; 4—конденсатор на 0,5 мф, 1000 в; 5— конденсатор на 1 мф, 690 в; 6 — конденсатор на 2500 мф, 2500 в (емкостная защита); 7—коммутатор переключения частоты; 8 и 9 — дроссельные регуляторы (типа реостата накала радиоламп); провод медный ПБО, 1,5 мм, по 100 витков; 10 — первичная обмотка резонатора (автотрансформатора), 9—10 витков, провод 3х1 мм (ПБО); 11 — вторичная обмотка резонатора, 3000 витков, провод ПЭШО 0,2 мм; 12 — обкладки конденсатора; 13 — педаль.
Искровой же генератор еще при монтаже настраивается на одну доминирующую частоту, но, как и каждая искра, сопровождается целой гаммой других частот. Поэтому здесь выделять определенные детали не удастся. Но зато на снимке будет отчетливо изображена структура фотографируемого предмета с множеством деталей, которые резонировали на эту гамму частот.
Таким образом, оба генератора, ламповый и искровой, дополняют друг друга. Поскольку искровой генератор обладает большими возможностями, мы в основном работаем с ним. Этот генератор (рис. 1) состоит из катушки прерывателя, колебательного контура и педали для ножного включения.
1.3 Катушка прерывателя
Катушка прерывателя (рис. 2) выполняется из гетинакса, фибры или дерева вырезать (две пластинки шириной 60, длиной 80 и толщиной 3 мм) в просверленные отверстия вклеивается для сердечника картонная трубка с внутренним диаметром 22 мм так, чтобы расстояние между боковыми пластинками катушки было 65 мм. Трубку для сердечника можно сделать из жести, развернув ее края 2 так, чтобы пластинки 1 не могли сойти с трубки. Металлическая трубка должна быть обязательно с одной стороны разрезана вдоль оси (щель — 3 мм), иначе так, чтобы расстояние между боковыми пластинками катушки было 65 мм. Трубку для сердечника можно сделать из жести, развернув ее края 2 так, чтобы пластинки 1 не могли сойти с трубки. Металлическая трубка должна быть обязательно с одной стороны разрезана вдоль оси (щель — 3 мм), иначе при переменном токе она станет как бы замкнутым витком трансформатора, где начнет индуцироваться ток большой величины, и катушка сгорит. Металлическую трубку надо изолировать несколькими оборотами плотной бумаги 3, которые будут сдерживать боковые пластины катушки от сползания. Для диэлектрической прочности бумагу желательно пропитать шеллаком или нитролаком, а трубку покрыть внутри изолирующим лаком, чтобы пластинки сердечника не замыкали ее, и набить полосками трансформаторной стали; они должны на 3—4 мм выступать с одной стороны катушки, на которой просверлены четыре отверстия диаметром 4 мм для крепежных болтов 6,9 и 14.
Рис 2 Катушка прерывателя.
Прерыватель делается по форме, указанной пунктиром, из стальной (трансформаторной) пластины; на одной стороне ее пробивается отверстие для крепления 6, на другой стороне приклепывается вольфрамовый контакт 7 диаметром 4 мм. Другая пластина прерывателя 8 изготовляется из жесткой латуни или другого немагнитного материала (иначе она под действием магнетизма сердечника начнет колебаться в такт с первой пластиной, и генератор будет работать нечетко); в ней по углам делаются три отверстия диаметром 4 мм. Они должны совпадать с отверстиями первой пластины; одно из них продолговатое — для свободного перемещения пластины вдоль болта 9 при регулировке.