Приплотинна ГЕС потужністю 2х27 МВт на річці "Т"

б) на ГАЭС і пікових ГЕС для включення й відключення агрегатів вимикачі або вимикачі навантаження повинні вибиратися з підвищеним ресурсом роботи, що виключає вивід агрегату з роботи для планового ремонту або ревізії вимикача (вимикача навантаження);

в) для включення (відключення) і реверсування оборотного агрегату ГАЭС можуть використатися вимикач (вимикач навантаження) або роз'єднувачі з підвищеним ресурсом роботи;

г) для напруг 110-220 кв пікових ГЕС при відсутності генераторних вимикачів, для ланцюгів, що генерують, блокових трансформаторів варто розглядати застосування вимикачів для частих комунікаційних операцій;

д) для напруг 110-220 кв варто віддавати перевагу малообъемным масляним вимикачам;

е) застосування КРУЕ 110 кв і вище визначається положеннями пункту 2.5.5 Норм технологічного проектування ГЕС і ГАЕС [7];

ж) власний час відключення вимикачів повинне задовольняти вимогам стійкості електропередачі (енергосистеми).

 

5.3 Методика вибору головних схем електричних з'єднань ГЕС


Вибір головних схем електричних з'єднань вироблятися на підставі техніко-економічного зіставлення варіантів схем.

Варіанти головних схем для їхнього подальшого зіставлення вибираються відповідно до рекомендацій і вимогами керівних норм, до яких ставляться "Норми технологічного проектування ГЕС і ГАЕС [7], Норми технологічного проектування підстанцій [8], Правила пристрою електроустановок [11]".

Після вибору варіантів головних схем, виробляється їхнє техніко-економічне зіставлення.

Економічним критерієм, по якому визначають найвыгоднейший варіант, є мінімум наведених витрат, тис. грн./рік, обчислених по формулі:


, (7.1)


де  - дисконтна ставка (дисконтний коефіцієнт), що враховує строк окупності ГЕС, приймається рівним 0,1;

 - одноразові капітальні вкладення в споруджують объекты, що;

 - річні експлуатаційні витрати, у які входять норми амортизаційних відрахувань і витрати на обслуговування;

 - величина очікуваного збитку, викликаного можливим порушенням нормальної роботи системи й порушенням електропостачання споживачів.

Величина очікуваного збитку враховується у випадках, коли станція займає важливе місце в системі електропостачання країни й очікуваний збиток буде значний. Для невеликих станцій, як наприклад, проектована в даному дипломі, він не враховується.

При виборі головних схем електричних з'єднань мають місце такі поняття, як "одноцільова й багатоцільова оптимізація".

Вище викладений метод техніко-економічного зіставлення, коли вибір схеми проводиться лише по одному параметрі (мінімум наведених витрат), ставиться до методів одноцільової оптимізації. У випадках, коли проектується велика станція, що грає важливу роль у СЕС країни, ураховувати при виборі головної схеми лише вартісні показники, буває недостатньо. Тоді виникає безліч показників (економічність, надійність, можливість подальшого розширення схеми й т.д.), які в різному ступені властиві різним варіантам головних схем.

Ці, що відрізняються між собою варіанти входять в, так називане, безліч Парето, і подальший вибір головних схем іде шляхом порівняння різних варіантів по їхніх основних параметрах з метою виявлення найбільш оптимального варіанта головної схеми електропостачання.

Проводити вибір по методу багатоцільової оптимізації - трудомісткий і складний процес. Тому при проектуванні намагаються звести вибір до вартісного показника, тобто до одноцільової оптимізації, якщо це можливо.


5.4 Основні варіанти головних схем електричних з'єднань ГЕС


Основні варіанти головних схем наведені нижче в (табл.7.1, 7.2, 7.3, 7.4). Схеми зображені умовно, із вказівкою тільки основного встаткування (трансформатори, високовольтні вимикачі, роз'єднувачі, реактори, вимикачі навантаження, запобіжники). Джерелом для наведених нижче схем є " Норми технічного проектування підстанцій" [8], застосування цих норм порозумівається, що ВРП ЕС є у свою чергу підстанціями СЕС. Тому перераховані в нормах умови й рекомендації для них також справедливі.


6. Розрахунок струмів короткого замикання


6.1 Загальні відомості


Короткими замиканнями (К.З.) називають усяке непередбачуване нормальними умовами роботи замикання між фазами (фазними провідниками електроустановки), замикання фаз на землю (нульове проведення) у мережах із глухими-глухими-заземленими й эффективно-заземленными нейтралями, а також виткові замикання в електричних машинах [13].

К.З. виникають при порушенні ізоляції електричних машин, ізоляцій й електромеханічних частин.

В основному, ушкодження ізоляції відбувається за рахунок старіння, неправильного обслуговування, механічних ушкоджень. Крім того, К.З. викликаються перекриттям ТВЧ тваринами й птахами; ударами блискавок; обрив ЛЕП внаслідок погодних умов, дії людей, неправильної дії персоналу.

Протікання струмів К.З. приводить до збільшення втрат електроенергії в провідниках і контактах, що викликає їхнє підвищене нагрівання. Нагрівання може прискорити старіння й руйнування ізоляції, викликати зварювання й вигоряння контактів, втрату механічної міцності шин і проводів і т.п. Провідники й апарати повинні без ушкоджень переносити протягом заданого розрахункового часу нагрівання струмами К.З., тобто повинні бути термічно стійкими.

Протікання струмів К.З. супроводжується також значними електродинамічними зусиллями між провідниками. Якщо не прийняти належних мір, під дією цих зусиль ТВЧ й їхня ізоляція можуть бути зруйновані. ТВЧ, апарати й електричні машини повинні бути сконструйовані так, щоб витримувати без ушкоджень зусилля, що виникають при К.З., тобто мати електродинамічну стійкість.

К.З. супроводжується зниженням рівня напруги в електричній мережі. Різке зниження напруги при К.З. може привести до порушення стійкості паралельної роботи генераторів і до системної аварії з більшим збиткам.

Для забезпечення надійної роботи енергосистем і запобігання ушкоджень устаткування при К.З. необхідно швидко відключати ушкоджена ділянка. До мір, що зменшують небезпека розвитку аварій, ставляться також правильний вибір апаратів за умовами К.З., застосування токоограничивающих пристроїв, вибір раціональної схеми мережі й т.п.

Розрахунок струму К.З. з урахуванням дійсних характеристик і дійсного режиму роботи всіх елементів енергосистеми, що складає з багатьох ЭС і підстанцій, досить складний. Разом з тим для рішення більшості завдань, що зустрічаються на практиці, можна ввести допущення, що спрощують розрахунки й не вносять істотних погрішностей. До таких допущень ставляться наступні [13]:

приймається, що фази ЕДС всіх генераторів не змінюються (відсутність хитання генераторів) протягом усього процесу К.З.;

не враховується насичення магнітних систем, що дозволяє вважати постійними всіх елементів короткозамкненого ланцюга;

зневажають струмами, що намагнічують, силових трансформаторів;

не враховують, крім спеціальних випадків, ємнісні провідності елементів короткозамкненого ланцюга не землю;

уважають, що трифазна система є симетричною (несиметричні К.З. розглядаються в конкретній крапці, вся інша частина схеми вважається симетричною);

зневажають активними опорами ланцюга, якщо відношення х/ч більше трьох;

наближений облік навантаження. Для того, щоб урахувати в підживленні струму К.З. масу двигунів, що харчуються те генератора, приймають: потужність двигунів узагальнюється; навантаження підключається в схемах у характерних крапках.

Зазначені допущення поряд зі спрощеннями розрахунків приводять до деякого перебільшення струмів К.З. (погрішність практичних методів розрахунку не перевищує 10%, що прийнято вважати припустимим).


6.2 Розрахунок струмів при трифазному короткому замиканні


Для того щоб зробити розрахунок кожного К.З. за вихідною схемою ділянки енергосистеми складається так називана схема заміщення, у яку кожен елемент входить зі своїми опором, а джерела показуються крапками додатка ЕДС (рис.6.2).

Тому що елементи вихідної схеми щодо крапки К.З. перебувають у різних умовах (за рівнем напруги) необхідно всі опори елементів привести до єдиної умови; до крапки К.З.

При використанні системи відносних одиниць вибирають базисні умови.

Як базисні величини приймаємо базисну потужність Sб і базисна напруга Uб.

За базисну потужність (залежно від потужностей трансформаторів у схемі) приймають 100 МВА або 1000 МВА.

Як базисна напруга приймають напругу щабля К.З. (місця К.З.).


   

Рис 6.1 - Розрахункова схема        Рис 6.2 - Схема заміщення


Для наступного вибору й перевірки апаратур розглянемо три випадки розташування крапки К.З.

Струм К.З. на шинах 115 кв (крапка ДО1)

Базисні умови:


= 100 МВА, = 115кв

; кА (5.1)

= 0,502 кА


Рис.6.3 Схема заміщення при к.з. на шинах 115 кВ


Розраховуємо опору ланцюга по наступних формулах:

Опір системи:


xc = , о. е. (1.5.2)


Опір ЛЕП:


x = ; о. е


де  - питомий опір ВЛЭП (0,4 Ом/км)

 - середня напруга ЛЕП; кв

L - довжина лінії, км.

Опір двухобмоточного трансформатора:


xт = ; о. е (1.5.4)


Опір синхронного генератора:


xг = cos ; о. е (1.5.5)


де  - сверхпереходное опір генератора =0,23.

cos =0,85.

Відповідно до вищевказаних формул расчитываем опір елементів ланцюга:

=

= =

= =

= =

Перетворимо схему:

= =

= = + =

Тому що значення ЕДС генераторів на двох кінцях галузей схеми однакові, те

= =

= + =

Схема має вигляд:


        

Рис 6.4                                                      Рис 6.5


Розраховуємо значення періодичної складової струму к.з. у нульовий момент часу.

Значення періодичної складової струму к.з. від системи:


Iп0* з = =;

Iп0 з = Iп0* з = кА;


Значення періодичної складової струму к.з. від генераторів:


Iп0* сг = =;

Iп0 з = Iп0* з = кА;


де Ес - ЕДС системи, Е =1.

Есг - ЕДС генератора;

Есг = 1+ ; (5.2)


Есг = 1+ ;

Сумарне значення періодичної складової струму к.з. у нульовий момент часу на шинах 115 кв.


Iп0 Σ = Iп0 з + Iп0 сг = 23,905 + 0,968 = 24,873 кА


Струм к.з. на шинах 10,5 кв (крапки К2, К3)

Базисні умови:


= 100 МВА, = 10,5кВ

; кА (5.3)


= 5,499 кА

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать