Проект осветительной установки свинарника на 1840 голов поросят-отъемышей

Определяем требуемое количество групповых линий в групповом щитке:

количество однофазных групп



Для удобства управления освещением в разных половинах здания принимаем три группы.

Выбираем из [3] табл. П.5.2 групповой щиток ЯРН 8501-8301 с 6-ю однополюсными автоматическими выключателями.

На плане здания намечаем трассы прокладки сетей, места установки выключателей, обозначаем, номера групп и приводим данные светильников.


3.3 Выбор марки проводов (кабелей) и способов прокладки сети


Осветительную электропроводку, как правило, следует выполнять проводами и кабелями с алюминиевыми жилами. С медными жилами ее выполняют только во взрывоопасных помещениях классов В-1 и В-la. Гибкие кабели с медной жилой и резиновой изоляцией марки КРПТ, КРПГ применяют для подключения переносных или передвижных источников оптического излучения.

При проектировании сельскохозяйственных объектов используют следующие способы прокладки электропроводок: на тросе; на лотках и в коробах; в пластмассовых и стальных трубах; металлических и гибких резинотехнических рукавах; в каналах строительных конструкций; проводом и кабелем по строительным основаниям и конструкциям (ОСТ 70.004.0013 - 81).

При выборе того или иного способа прокладки электропроводки необходимо учитывать условия среды помещения, его строительные особенности, архитектурно-художественные экономические требования.

В помещении для содержания животных, способ прокладки кабеля - на тросах, во всех остальных помещениях - скрытая проводка.

По категории помещения и условиям окружающей среды из табл. П.5.1 [3] выбираем кабель АВВГ.

Составляем расчётную схему сети рис 3


3.4 Защита электрической сети от аварийных режимов


К аварийным режимам в осветительных сетях относят: токи короткого замыкания, неполнофазный режим работы (для трёхфазной линии), токи утечки. Для защиты от токов короткого замыкания служат автоматические выключатели ВА 14 - 26. Для защиты от токов утечки согласно ПУЭ принимаем УЗО с уставкой 30 мкА.


3.5 Расчёт и проверка сечения проводников электрической сети


Принимаем допустимые потери напряжения ΔU = 2.5%. Тогда расчётное значение сечения проводника на участке:



где S - сечение проводов участка, мм2;

ΣМ = ∑Р·l - сумма моментов рассчитываемого и всех последующих участков с тем же числом проводов, что и у рассчитываемого, кВт·м;

Σα·m - сумма моментов всех ответвлений с числом проводов, отличающихся от числа проводов рассчитываемого участка, кВт·м;

α - коэффициент приведения моментов, зависящий от числа проводов рассчитываемого участка и в ответвлениях [3] П.5.3;

С - коэффициент зависящий от материала проводов, системы и напряжения сети,

ΔU - допустимая потеря напряжения,% от Uн;

l - длина участка, м.

Определяем сечение первой групповой линии:



С учётом механической прочности принимаем ближайшее, стандартное большее сечение S0-1=2.5 мм2

Приняв для люминесцентных одноламповых светильников соsφл. л.1=0.85, для ламп накаливания cosφл. н=1.0

Определим коэффициент мощности на участке 1-2:



Определяем расчётный ток на участке 1-2:



где Uл=220В

Проверяем принятое сечение на нагрев. Длительно допустимый ток для данного сечения Iдоп=19А. Iдоп ≥ Iр, 19≥ 5.36А - условие выполняется.

Определяем действительную потерю напряжения в линии 1.



По расчетному току выбираем плавкую вставку защитного аппарата, установленного в распределительном щите. Принимаем для защиты плавкий предохранитель. Из табл. П.5.9 выбираем Iв ≥ IР =4.36 А. Используя табл. П.5.10 принимаем ток плавкой вставки Iв =6.0 А.

Проверяем сечение на соответствие вставке защитного аппарата. Принимаем β =1.0 Тогда Iдоп =19А≥ 1·10=10А

Определяем сечение первой групповой линии:

s=


C учетом механической прочности (табл. П.5.6) принимаем ближайшее стандартное большее сечение S1-2=2.5 мм2

cos

Проверяем принятое сечение на нагрев. Длительно допустимый ток для данного сечения (табл. П.5.7) Iдоп=21А.

Коэффициент мощности на участке 1-2 (5.10).

Расчетный ток на участке 1-2 (5.9)

Iр1-2=А

Тогда Iдоп=21А> Iр=1.7А

По расчетному току выбираем уставку защитного аппарата в групповом щитке. Из табл.5.9 принимаем Iв ≥ IР =1.7А. В табл. П.5.11 находим ближайший номинальный ток расцепителя автоматического выключателя Iв =6.0 А.

Проверяем выбранное сечение на соответствие уставке защитного аппарата (5.11). Из таблицы 5.1 принимаем β=1.0. Тогда Iдоп=21А>1.0·6.0 =6А.

Так как сечение на головном участке групповой линии менее 2.5мм2, то сечения последующих участков линии не рассчитываем, а принимаем по механической прочности (табл. П.5.6) равными 2.5мм2.

Определяем действительную потерю напряжения на остальных участках.

Определяем сечение второй группы.


S1-9 =

учётом механической прочности принимаем ближайшее, стандартное большее сечение S1-9 =2.5 мм2 Определим коэффициент мощности на участке 1-9:



Определяем расчётный ток на участке 1-9:

Проверяем принятое сечение на нагрев. Длительно допустимый ток для данного сечения Iдоп=21А


Iдоп ≥ Iр

21 ≥ 3.65


По расчётному току выбираем ток уставки электромагнитного расцепителя автоматического выключателя.


Iу ≥ 1.4·Iр

Iу = 6> 5.11А (из табл. П.5.10 [3])


Проверяем выбранное сечение на соответствие вставке защитного аппарата

Iдоп ≥ β·Iу

Iдоп = 21> 1 · 6= 6А - условие выполняется.


Определяем действительную потерю напряжения в линии 1-9

Определяем сечение третьей группы:

С учётом механической прочности принимаем ближайшее, стандартное большее сечение S1-16=2.5 мм2

По механической прочности принимаем сечение на остальных участках 2.5 мм2.

Определим коэффициент мощности на участке 1-40:

Определяем расчётный ток:

Проверяем принятое сечение на нагрев. Длительно допустимый ток для данного сечения Iдоп=21А


Iдоп ≥ Iр

21 ≥ 3.85


По расчётному току выбираем ток уставки электромагнитного расцепителя автоматического выключателя.


Iу ≥ 1.4·Iр

Iу = 6> 5.39 (из табл. П.5.10 [3])


Проверяем выбранное сечение на соответствие вставке защитного аппарата

Iдоп ≥ β·Iу

Iдоп = 21> 1*6= 6А - условие выполняется.


Так как сечение на головном участке данной групповой линии менее 2.5 мм2, то сечение последующих участков линии не рассчитываем, а принимаем по механической прочности (табл. П.5.6) равными 2.5мм2.

Определяем сечение четвертой группы:

С учётом механической прочности принимаем ближайшее, стандартное большее сечение S1-19 =2.5 мм2

Определим коэффициент мощности на участке 1-19:

Определяем расчётный ток на участке 1-19:

Проверяем принятое сечение на нагрев. Длительно допустимый ток для данного сечения Iдоп=21А


Iдоп ≥ Iр

21 ≥ 1.61


По расчётному току выбираем ток уставки электромагнитного расцепителя автоматического выключателя.


Iу = 6>1.61Атабл. П.5.10 [3])

Проверяем выбранное сечение на соответствие вставке защитного аппарата


Iдоп ≥ β·Iу

Iдоп = 21> 1 ·6=6А условие выполняется.


Определяем сечение пятой группы:

С учётом механической прочности принимаем ближайшее, стандартное большее сечение S1-17=2.5 мм2. По механической прочности принимаем сечение на остальных участках 2.5 мм2.

Определим коэффициент мощности на участке 1-17:

Определяем расчётный ток на участке 1-17:

Проверяем принятое сечение на нагрев. Длительно допустимый ток для данного сечения Iдоп=21А


Iдоп ≥ Iр

21 ≥ 1.93


По расчётному току выбираем ток уставки электромагнитного расцепителя автоматического выключателя.


Iу = 6> 1.93 (табл П.5.10 [3])


Проверяем выбранное сечение на соответствие вставке защитного аппарата

Iдоп ≥ β·Iу

Iдоп = 21> 1 · 6= 6А - условие выполняется.


Так как сечение на головном участке данной групповой линии менее 2.5 мм2, то сечение последующих участков линии не рассчитываем, а принимаем по механической прочности (табл. П.5.6) равными 2.5мм2.

Определяем сечение шестой группы:

С учётом механической прочности принимаем ближайшее, стандартное большее сечение S1-67=2.5 мм2. По механической прочности принимаем сечение на остальных участках 2.5 мм2.

Определим коэффициент мощности на участке 1-33:

Определяем расчётный ток на участке 1-33:

Проверяем принятое сечение на нагрев. Длительно допустимый ток для данного сечения Iдоп=21А


Iдоп ≥ Iр

21 ≥ 2.64


По расчётному току выбираем ток уставки электромагнитного расцепителя автоматического выключателя.


Iу = 6> 2.64 (табл П.5.10 [3])

Проверяем выбранное сечение на соответствие вставке защитного аппарата


Iдоп ≥ β·Iу

Iдоп = 21> 1 · 6= 6А - условие выполняется.


Так как сечение на головном участке данной групповой линии менее 2.5 мм2, то сечение последующих участков линии не рассчитываем, а принимаем по механической прочности (табл. П.5.6) равными 2.5мм2.

Проводим аналогичный расчет для ЩО-2.

Результаты сводим в таблицу.


Таблица 6. Расчет сечений для второго щитка.

Участок

Sр. мм2

Iф, А

соs

Iрасц

Рф

1-38

2,5

4,33

0,87

0,01

6,3

2,9

38-39

2,5

2,35

0,85

0,03

6,3

0,44

3-44

2,5

3,21

0,85

0,44

6,3

0,6

38-49

2,5

3,21

0,85

0,75

6,3

0,6

38-54

2,5

1,75

0,93

0,01

6,3

0,36

38-71

2,5

1,5

0,85

0,04

6,3

0,28

38-76

2,5

3,21

0,91

1,4

6,3

0,64


Исходя из условий экономии электроэнергии и проводникового материала для подключения осветительного щитка, используем однофазную трёхпроводную линию, выполненную кабелем АВВГ 3×2.5.

 


3.6 Мероприятия по повышению коэффициента мощности электрической сети осветительной установки


Повышение коэффициента мощности электроустановок - важная задача, так как низкий cosφ приводит к перерасходу металла на сооружение электрических сетей, увеличивает потери электроэнергии, недоиспользование мощности и снижение коэффициента полезного действия первичных двигателей и генераторов электростанций и трансформаторов электрических подстанций.

Для сельских электроустановок наиболее приемлемым способом повышения коэффициента мощности является компенсация реактивной мощности при помощи статических конденсаторов. Статические конденсаторы имеют очень малые потери мощности, бесшумны в работе, износоустойчивы, просты и удобны в эксплуатации.

Статические конденсаторы могут быть подобраны на малые мощности, что особенно важно для сельскохозяйственных установок.

Кроме того, выбор конденсаторных установок производится с учетом всех приёмников здания.


4. Эксплуатация осветительной установки


4.1 Определение мер защиты от поражения электрическим током


Для защиты людей от возможного поражения электрическим током электрические сети здания блока дезинфекции транспортных средств выполняются трёхпроводным кабелем, одна из жил которого выполняет роль специального защитного проводника. К ней подключаются все металлические предметы и корпуса светильников. Защитный проводник соединён с нулевой точкой трансформатора и заземляющим контуром. В помещении установлено УЗО, защищающее от токов утечки более 30 мкА.

При монтаже светильников на тросах несущие тросы зануляют не менее чем в двух точках по концам линии, путём присоединения к защитному (РЕ) проводнику, гибким медным проводником. Соединение гибкого проводника с тросом выполняется с помощью ответвительного зажима.

Сопротивление изоляции кабелей осветительной сети должно быть не менее 0.5МОм.

Светильники во всех помещениях расположены на высоте 2.5м, что затрудняет к ним доступ без специальных приспособлений и способствует электробезопасности.


4.2 Указания по энергосбережению и эксплуатации осветительной установки


При проектировании осветительной установки были использованы следующие светотехнические решения:

1. для производственных помещений использованы наиболее экономные источники освещения, а именно: газоразрядные лампы низкого давления;

2. стены помещения покрыты побелкой с целью увеличения коэффициента использования светового потока;

3. схема питания освещения - радиальная;

4. принято наибольшее разрешённое напряжение питания;

5. групповой щит установлен в центре электрических нагрузок;

6. лампы имеют диапазон рабочего напряжения равный напряжению питания, что позволяет избежать перерасхода электроэнергии и уменьшения срока службы.

Эксплуатация электрооборудования осуществляется энергетической службой предприятия с участием "Агропромэнерго"

Энергосберегающие мероприятия при эксплуатации осветительных установок:

своевременная очистка светильников;

своевременная замена ламп;

окраска рабочих поверхностей в светлые тона;

чистка оконных проёмов.


Литература


1. Правила устройства электроустановок. - М.: Энергоатомиздат, 2000г.

2. Стандарт предприятия. СТП БАТУ01.11 - 98. Правила оформления дипломных и курсовых проектов (работ) для специальности С.03.02. - 00 "Электрификация и автоматизация сельского хозяйства" - Мн.: Ротапринт БАТУ 1999г.

3. Николаёнок М.М., Заяц Е.М. Расчёт осветительных и облучательных установок сельскохозяйственного назначения. Под ред. Зайца Е.М. - Мн.: ООО "Лазурак", 1999г.

4. Электрооборудование осветительных и облучательных установок. Справочное пособие под редакцией В.П. Степанцова. - Мн.: Ураджай, 1991г.


Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать