Проект теплоэлектроцентрали (ТЭЦ)

-Доля воды взятой из подающей магистрали в

3 режиме


-Доля воды взятой из подающей магистрали в

4 режиме:


 - вся вода на ГВС берется из подающего трубопровода.

4.4 Расход сетевой воды на горячее водоснабжение из подающей магистрали

 

-Расход сетевой воды на ГВС из подающей магистрали в

1 режиме:


 - вся вода на ГВС берется из обратного трубопровода.

-Расход сетевой воды на ГВС из подающей магистрали во

2 режиме:


-Расход сетевой воды на ГВС из подающей магистрали в

3 режиме:


-Расход сетевой воды на ГВС из подающей магистрали в

4 режиме:



4.5 Суммарный расход сетевой воды на теплофикацию.

- Суммарный расход сетевой воды на теплофикацию в

1 режиме:

- Суммарный расход сетевой воды на теплофикацию во

2 режиме:


- Суммарный расход сетевой воды на теплофикацию в

3 режиме:


- Суммарный расход сетевой воды на теплофикацию в

4 режиме:


В летнем режиме для поддержания циркуляции добавляется 10%.

 

4.6 Расчет расхода воды на подпитку теплосети.

 

= 70 м3 – объем воды в тепловых сетях (на 1 Гкал/ч)

-Расход воды на подпитку теплосети в

1,2 и 3 режимах:


-Расход воды на подпитку теплосети в

4 режиме:


5. Расчет тепловой схемы


. Принципиальная схема подготовки подпиточной и сетевой воды с вакуумным деаэратором: 1 – конденсатор турбины со встроенным пучком; 2 – пароводяной подогреватель подпиточной воды (ПВПподп); 3 – цех химводоочистки (ХВО); 4 – вакуумный деаэратор; 5 – бак-аккумулятор подпиточной воды; 6 – подпиточный насос; 7 – перекачивающий насос; 8 – сетевой насос; 9 – основные подогреватели сетевой воды (ОП); 10 – пиковый подогреватель сетевой воды (ПП).


5.1 Расчет тепловой схемы подготовки подпиточной и сетевой воды

 

5.1.1 Расчет температуры сырой воды после встроенного пучка.


,

 

где QВП =5800 кВт - тепловая мощность встроенного пучка турбины Т-50;

QВП =11600 кВт - тепловая мощность встроенного пучка турбины Т-110;

=5 оС - температура воды на входе во встроенный пучок (зимний период).

=15 оС - летний период.

 

-Температура сырой воды после встроенного пучка в

1,2 и 3 режимах:

 


-Температура сырой воды после встроенного пучка в

4 режиме:


5.1.2 Расход греющего пара на подогреватель (ПВП) после встроенного пучка

Расход греющего пара на ПВПподп, кг/с, определяется из уравнения теплового баланса пароводяного подогревателя



где  – температура воды после данного подогревателя (перед ХВО), °С; по условиям работы с ионообменными смолами температура воды перед ХВО должна быть не более 40°С; в расчете принята 36 °С.

 и  – соответственно энтальпии греющего пара и его конденсата, кДж/кг.

-Расход греющего пара на ПВП в

1 режиме:


tоп= 120°С;

tн = 120+5 = 125°С; - с учетом недогрева 5 °С;

Pн =0,232 МПа;

Pотб = 0,232 ∙1,1 = 0,255 МПа;

= 2717,4 кДж/кг; = 538,14 кДж/кг.


-Расход греющего пара на ПВП во

2 режиме:


tоп= 100°С;

tн = 105°С; - с учетом недогрева 5 °С;

Pн =0,1209 МПа;

Pотб = 0,133 МПа;

= 2687,7 кДж/кг; = 451,96 кДж/кг.

 


-Расход греющего пара на ПВП в

3 режиме:


tоп= 79°С;

tн = 84°С; - с учетом недогрева 5 °С;

Pн =55,636 кПа;

Pотб = 61,2 кПа;

= 2653,7 кДж/кг; = 361,98 кДж/кг.

 


-Расход греющего пара на ПВП в

4 режиме:


tоп= 65°С;

tн = 70°С; - с учетом недогрева 5 °С;

Pн =31,201 кПа;

Pотб = 34,32 кПа;

= 2629,9 кДж/кг; = 302,32 кДж/кг.

 

5.1.3 Расчет расхода греющей среды на вакуумный деаэратор.


,


где - расход подпиточной воды после вакуумного деаэратора;

= 51° С - температура подпиточной воды после вакуумного деаэратора;

= 31°С - температура сырой подпиточной воды перед вакуумным деаэратором;

 - температура греющей воды для вакуумного деаэратора (берется из графика температур сетевой воды).

Расход греющей среды на вакуумный деаэратор в 1 режиме:

=120°С


-Расход греющей среды на вакуумный деаэратор в 2 режиме:

=100°С



-Расход греющей среды на вакуумный деаэратор в 3 режиме:

По условию работы вакуумного деаэратора температура греющей среды должна быть не ниже 100оС. Принимаю = 100 оС.


-Расход греющей среды на вакуумный деаэратор в 4 режиме:


 

5.1.4 Температура сетевой воды в узле смешения перед основными сетевыми подогревателями.


,


где Gобр – расход сетевой воды в обратном трубопроводе тепловой сети, кг/с.

.


-для 1 режиме:


-для 2 режиме:



-для 3 режиме:


-для 4 режиме:



5.1.5 Расход греющего пара на основные сетевые подогреватели

Расход сетевой воды через основные сетевые подогреватели Gоп определяется из расхода сетевой воды в подающей магистрали с учетом расхода сетевой воды на вакуумный деаэратор Gгр


.


Расход пара на основные подогреватели, кг/с, определяется из уравнения теплового баланса поверхностного подогревателя



-Расход греющего пара на основные подогреватели в

1 режиме:


-Расход греющего пара на основные подогреватели в

2 режиме:


-Расход греющего пара на основные подогреватели в

3 режиме:


-Расход греющего пара на основные подогреватели в

4 режиме:



5.1.6 Суммарный расход пара из теплофикационного отбора турбины на подготовку сетевой и подпиточной воды.


.

-Суммарный расход пара на подготовку сетевой воды в 1 режиме:

 

-Суммарный расход пара на подготовку сетевой воды во 2 режиме:


 

-Суммарный расход пара на подготовку сетевой воды в 3 режиме:


 

-Суммарный расход пара на подготовку сетевой воды в 4 режиме:



5.1.7 Тепловая нагрузка пиковых подогревателей

Нагрузка пиковых подогревателей сетевой воды, кВт, рассчитывается по формуле



где tпод – температура сетевой воды в подающем трубопроводе (после основных подогревателей), °С;


Из графика температур сетевой воды видно, что необходимость в пиковом подогреве есть в первых двух режимах.


-для 1 режима:


-для 2 режима:

В 3-м и, тем более, в 4-м режимах необходимости работы пиковых подогревателей нет.

5.2 Расчет схемы подготовки добавочной воды для котлов

Принципиальная схема подготовки добавочной воды: 1 – барабан котла; 2 – расширитель непрерывной продувки первой ступени (РНП ВД); 3 – расширитель непрерывной продувки второй ступени (РНП НД); 4 – теплообменник непрерывной продувки (ТНП); 5 – подогреватель добавочной воды перед ХВО (ПВП1); 6 – ХВО; 7 – пароводяной подогреватель добавочной воды перед деаэратором (ПВП2); 8 – атмосферный деаэратор добавочной воды (ДА); 9 – перекачивающий насос.

5.2.1          Расход продувочной воды после расширителя непрерывной продувки высокого давления.

Количество продувочной воды после расширителя непрерывной продувки высокого давления (РНП ВД), кг/с, определяется по формуле


,


где Gпр – расход продувочной воды, кг/с; принимается 3% от суммарной паропроизводительности котлов, так как принята схема ТЭЦ с поперечными связями;

 – энтальпия пара с давлением 0,6 МПа, отводимого от РНП ВД в деаэратор питателной воды, кДж/кг;

hпр – энтальпия продувочной воды после барабана котла (перед расширителями), кДж/кг; определяется по давлению в барабане котла Рб; давление в барабане принято на 10% выше давления на выходе из котла;

– энтальпия продувочной воды после расширителя, равная энтальпии конденсата при давлении 0,6 МПа, кДж/кг.


кг/с;

МПа;

т/ч.


Расход отсепарированного пара РНП ВД, кг/с, определяется из уравнения материального баланса расширителя


т/ч.

5.2.2 Расход продувочной воды после расширителя непрерывной продувки низкого давления.

Количество продувочной воды после расширителя непрерывной продувки низкого давления (РНП НД), кг/с, определяется по формуле


,


где  – энтальпия пара с давлением 0,12 МПа, отводимого от РНП НД в атмосферный деаэратор добавочной воды, кДж/кг;

 – энтальпия продувочной воды после расширителя, равная энтальпии конденсата при давлении 0,12 МПа, кДж/кг.

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать