Вместимость питательных баков (м3) из расчета часового запаса воды
Vп..б. = , (22)
- расход питательной воды при расчетной нагрузке котельной, кг/ч.
Вместимость конденсатных баков:
Vк.б. = , (23)
где - коэффициент возвращаемого конденсата, =0,7 (стр.131/1/);
- расход питательной воды при расчетной нагрузке котельной, кг/ч.
Расход питательной воды найдем по формуле:
(24)
D- расчетная паропроизводительность всех котлов, кг/ч;
П- продувка котлов, %(при питании котлов химически очищенных водой П=0,5…3,0%);
Вместимость питательных баков:
Вместимость конденсатных баков:
Vк.б. = ,
Подача конденсатного насоса (м3/ч) должна быть равна часовому объему конденсата Vк.б а напор создаваемый насосом принимают 150…200кПа.
Выбираю центробежный насос 1,5К-6 (приложение 21/1/): подача 6 м3/ч; развиваемое давление 199 кПа; КПД=50%.
Для принудительной циркуляции воды в тепловых сетях устанавливают два сетевых насоса с электроприводом (один из них резервный). Производительность насоса, м3/ч, равная часовому расходу сетевой воды в подающей магистрали:
(25) |
где - расчетная тепловая нагрузка, покрываемая водой, (в Вт);
- плотность обратной воды, кг/м3, =977,8 кг/м3 (132/1/),
и - расчетный температуры прямой и обратной воды, °С.
Тепловая нагрузка , покрываемая паром, Вт
Вт
- тепловая мощность, потребляемая котельной на собственные нужды(подогрев и диарация воды, отопление вспомогательных помещений и др.)
(26)
Вт
Ориентировочно принимаем напор развиваемый сетевым насосом:
;
Выбираем два центробежных насоса 4КМ-12 (приложение 21/1/): подача 65 м3/ч; развиваемое давление 370 кПа; КПД=75%.
Подпиточные насосы компенсируют разбор воды из открытых тепловых сетей на горячее водоснабжение и технологические нужды, а также восполняют утечки сетевой воды, состовляющие 1…2% ее часового расхода.
Количество подпиточных насосов должно быть не менее двух. Устанавливают подпиточные насосы перед сетевыми насосами во всасывающую линию для обеспечения давления в обратной магистрали.
Подача подпиточного насоса(м /ч)
(27)
- расчетная тепловая нагрузка горячего водоснабжения, Вт
- часть расчетной технологической нагрузки, покрываемой теплоносителем, Вт
и - расчетные температуры горячей и холодной воды, 0С
- плотность подпиточной воды, можно принять равной кг/м3,
Ориентировочно принимаем напор развиваемый подпиточными насосами:
Выбираем насос 3КМ-6 (приложение 21/1/): подача 45 м3/ч; развиваемое давление 358 кПа; КПД=70%. Устанавливают подпиточные насосы перед сетевыми насосами во всасывающую линию для обеспечения давления в обратной магистрали
Мощность, кВт, на привод центробежного насоса с электродвигателем,
N = |
(28) |
где Vt - производительность насоса, м3/ч; Рн - давление, создаваемое насосом, кПа; - к.п.д. насоса.
Для насоса 1,5К-6:
N= кВт,
Для насоса 4КМ-12:
N= кВт,
Для насоса 3КМ-6:
N=кВт
Расчет водоподготовки
В производственно- отопительных котельных получила распространение докотловая обработка воды в натрий-катионитовых фильтрах с целью ее умягчения. Объем катионита (м3), требующийся для фильтров,
; (29)
-расчетный расход исходной вод, м3/ч
- период между регенерациями катионита(принимаем равной 8…24ч)
- общая жескость исходной воды, мг∙экв/ м3 ( рекомендация на стр. 133/1/)
- обменная способность катионита, г∙ экв/ м3 (для сульфоугля Е=280…300, г∙ экв/ м3);
(30)
-расход исходной воды, м3/ч(для паровой котельной )
Расчетная площадь поперечного сечения одного фильтра:
(31)
h- высота загрузки катиона в фильтре, равная 2…3м
n- число рабочих фильтров(1…3)
По таблице 4.3 стр.134/1/подбираем фильтры с площадью поперечного сечения с запасом в сторону увеличенияА=0,39 м2
Далее определяем фактический межрегенерационный период (ч) и число регенераций каждого фильтра в сутки:
Число регенераций в сутки по всем фильтрам:
Для регенерации натрий- катионитовых фильтров используют раствор поваренной соли NaCl(6…8%).
Расход соли (кг) на одну регенерацию фильтра:
(32)
а- уднельный расход поваренной соли равный 200г/(г∙экв.).
Суточный расход соли по всем фильтрам:
8. Расчет тепловой схемы паровой котельной
Один из возможных вариантов принципиальной тепловой схемы котельной, работающей на открытые тепловые сети, представлен на рис. 4.
Вырабатываемый в котле К пар используется для подогрева сетевой воды в подогревателе ПС (Дпс). Конденсат этого пара через охладитель конденсата ОК подается в деаэратор питательной воды ДР 1. В этот же деаэратор поступает конденсат греющего пара подогревателя сырой воды ПСВ и подогревателя химочищенной воды ПХВ, а также добавка химочищенной воды mхов и отсепарировавшийся пар из расширителя непрерывной продувки СНП. Небольшой расход пара необходимый для подогрева этих потоков до 102...104 °С, подается в деаэратор Др1 через редукционную установку РУ. Подпитка тепловой сети осуществляется деаэрированной водой, подаваемой насосом сырой воды НСВ через ПСВ, химводочистку ХВО, охладитель деаэрированной воды ОДВ в деаэратор ДР2 и оттуда подпиточным насосом НПод подпиточным насосом в обратную магистраль перед сетевым насосом НС. Некоторое количество редуцированного пара используется на нагрев подпиточной воды в деаэраторе ДР2 (), на технологические нужды (Dт), на паровое отопление ( )и на собственные нужды (Dсн).
В задачу расчета тепловой схемы паровой котельной входит определение расходов, температур и давлений теплоносителей (пара и воды) по их потокам в пределах установки, а также суммарной паропроизводительности котельной.
Do = Dт + Dсн + + + Dпсв + Dпхв + Dсп. (33)
Расход пара на технологические нужды:
Dт = |
(34) |
где - тепловая мощность, отпускаемая технологическим потребителям, кВт;
- энтальпия пара, кДж/кг (определяется по давлению и по температуре для перегретого пара или же по давлению (температуре) насыщения и по степени сухости пара).
Dт =
Расход пара на отопление производственных помещений, если отопление паровое:
(35) |
где - тепловая мощность, идущая на отопление производственных помещений, кВт;
- тепловая мощность, идущая на вентиляцию производственных помещений, кВт;
- энтальпия возвращаемого конденсата (= 4,19×tк, где tк=70 °С).
Расход пара на собственные нужды принимается
Dсн=0,050× Dотп |
(36) |
Расход пара на деаэрацию потока подпиточной воды определяется из уравнения теплового баланса деаэратора ДР2:
(mпод. - )×с×+×ho = mпод. ×c×tд, |
(25) |
где - температура воды на входе в деаэратор ДР2, (=80...85 °С);
tд - температура деаэрированной воды, равная температуре насыщенного пара в деаэраторе при рд=0,12 МПа, определяем tд=105 0С;
ho - энтальпия пара, вырабатываемого котлом, кДж/кг, при р=0,2 МПа h0=2600 кДж/кг (по h, d - диаграмме).
= |
(26) |
Определяем тепловую мощность, передаваемой по тепловой сети:
Фсет=∑Фкр-∑Фс.н., (27)
где: ∑ Фкр - расчетная тепловая мощность котельной, (Вт);
∑Фс.н - тепловая мощность, потребляемая на собственные нужды, Вт. Предварительно принимается до 3% от общей тепловой мощности котельной установки.
Фс.н.=0,03×Фкр =0,03×6478149,8=194344,5 Вт;
Фсет =6478149,8-194344,5 =6283805,3 Вт.
Расход воды в подающей сети:
, (28)
где: tп - температура прямой сетевой воды на выходе из котла, °С;
t0 - температура обратной сетевой воды на входе в котел, 0С;
Температуры tп и t0 определяем по температурному графику (лист А1).
mп=6283805,3 /4,19×(150-70)=18,74 кг/с.
Расход подпиточной воды при закрытом режиме тепловой сети:
mпод=(0,01...0,03)×mп (29)
mпод =(0,01 ...0,03)×18,74 =0,1874...0,5622 кг/с, принимаем mпод=0,3 кг/с.
Расход воды в обратной тепловой сети:
mо= mп- mпод, (30)
mо=18,74-0,3=18,44 кг/с.
По формуле (26) определяем :
Расход пара для подогрева сырой воды Dпсв. до температуры 25...30 °С перед химводочисткой определяется из уравнения теплового баланса ПСВ:
Dпсв. = |
(31) |
где tх - температура исходной воды (зимой 5 °С, летом 15 °С);
hк - энтальпия конденсата при рк=0,12 МПа, hк=tд×с=105×4,19=439,95 кДж/кг;
hп - к.п.д. подогревателя (0,95...0,98).
Dп.с.в. =0,3×4,19×(30-5)/(2600-439,95)×0,96=0,015 кг/с. Температура подпиточной воды определяется из уравнения теплового баланса охладителя деаэрированной воды ОДВ:
Отсюда:
0С Температуру сетевой воды перед сетевыми насосами tсм определяем из уравнения теплового баланса точки смешения подпиточной и сетевой воды:
Преобразуя формулу (34) получим: tсм = (35) |
(32) (33) |
tсм =(0,3×49,8+18,44×70)/18,74=69,68 0С.
Расход пара на сетевые подогреватели Dс.п. определяется из уравнения теплового баланса вместе с охладителями конденсата ОК:
Dсп. × (ho - ) ×hп = mп. ×с ×(tп - tсм), |
(36) |
где - энтальпия конденсата после охладителей ОК,
= tох×с=30×4,19=125,7 кДж/кг.
Давление греющего пара принимается в ПС исходя из того, что температура насыщения его на 10...15 °С выше, чем tп.
Из уравнения (36) находим:
Dс.п. = |
(37) |
Расход химочищенной воды на подпитку тепловой схемы котельной, mх.в.о рассчитывается на компенсацию потерь пара и воды в схеме котельной:
mх.в.о = Dсн.+(1-mв) × Dт + Dпр + Dсеп, |
(38) |
где mв - коэффициент возврата конденсата, отдаваемого потребителям технологического пара (mв=0,5...0,7), если же технологические процессы потребляют пар без возврата конденсата, например, кормоцех, то mв=0;
Dпр - расход воды на продувку котла, Dпр = (0,03...0,05) × Dс.п., кг/с;
Dсеп - количество пара, отсепарированного в расширителе СНП непрерывной продувки, направляемый в деаэратор ДР 1,
Dсеп = (0,2...0,3) × Dпр.
Dпр.=0,04×2,66=0,11 кг/с;
Dсеп.=0,25×0,11=0,028 кг/с;
По формуле (38) определяем mх.в.о:
mх.в.о=0,0078 +(1-0,6)×0,062+0,11+0,028=0,17 кг/с.
Расход греющего пара на деаэратор питательной воды определяется из уравнения теплового баланса деаэратора:
×ho+mхов×с×+Dпс× +(Dпсв+Dпхв)×+×+Dт ×mвс×= mп.в×с×tд, |
(39) |
где - температура возвращенного конденсата технологического пара (= 40...70 °С);
mп.в - расход питательной воды в котле, рассчитанный на выработку пара Dок с учетом продувки котла:
mп.в = Dсп + Dпр, |
(40) |
mп.в=2,66+0,11=2,77 кг/с.
- энтальпия конденсата после отопительных приборов
= 4,19× tк, |
(41) |
( tк можно принять равной 70 °С),
= 4,19×70=293,3 кДж/кг,
После преобразования уравнения (38) находим:
= |
(42) |
Определяем паропроизводительность котельной из уравнения (21): Do = Dт + Dсн + + + Dпсв + Dпхв + Dсп.
Do= 0,062+0,156+0,0078+0,011+0,29+0,015 +0+2,66=2,97 кг/с.
N=
9. Технико-экономические показатели производства тепловой энергии
Работа котельной оценивается ее технико-экономическими показателями.
1. Часовой расход топлива (кг/ч):
(43)
q- удельная теплота сгорания топлива, по заданию для каменного угля:=21000 кДж/кг;
- к.п.д. котельного агрегата, — при работе на твердом топливе (приложение 14/1/);
2. Часовой расход условного топлива (кг/ч):
(44)
3. Годовой расход топлива (т или тыс. м3):
, (45)
где Qгод — годовой расход теплоты, ГДж/год.
т.
4. Годовой расход условного топлива (т или тыс. м3):
(46)
т.
5. Удельный расход топлива (т/ГДж или тыс. м3/ГДж):
т/ГДж. (46)
6. Удельный расход условного топлива (т/ГДж или тыс. м3/ГДж):
т/ГДж.
7. Коэффициент использования установленной мощности котельной:
, (47)
где Фуст — суммарная тепловая мощность котлов, установленных в котельной, МВт;
8760 — число часов в году.
Библиографический список
1) А.А.Захаров "Практикум по применению и теплоснабжению в с/х" - М.: Колос, 1995.- 176с.:ил.
2) А.А. Захаров "Применение тепла в с/х" - 2-е изд., перераб. и доп. –М.: Колос, 1980.- 311с.
3) Д.Х. Мигранов "Методические указания к выполнению расчетно-графических работ" - Уфа: БГАУ, 2003.
4) Драганов Б.Х. и др. "Теплотехника и применение теплоты в сельском хозяйстве".- М.: Агропромиздат, 1990.- 463с.: ил.