Проектирование электрической тяговой подстанции постоянного тока

50% от номинально значения – 1 раз в 1 час в течении 2 мин.

100% от номинального значения – 1 раз в 2 мин в течении 10 с.

Т.к. действующее значение выпрямленного тока подстанции не задано, то расчет мощности тягового трансформатора производим по суточному графику нагрузки тяговой подстанции «Белгород», построенному на основании почасового расхода электроэнергии на тягу поездов на 11.06.01.


Таблица 2.4 – Почасовой расход электроэнергии 11.06.2001 г.

Время

на тягу поездов

активная, кВт

реактивная, кВар

1

2240

1120

2

1400

840

3

1400

840

4

1680

840

5

2240

1120

6

1960

560

7

1680

560

8

2520

980

9

2800

1120

10

1400

840

11

280

560

12

840

560

13

1120

560

14

560

560

15

840

560

16

560

560

17

560

140

18

840

560

19

560

280

20

840

560

21

1120

560

22

1120

840

23

1120

840

24

1680

1120



SH.TP ≥ ST/N – мощность тягового трансформатора, к·ВА [5]


ST = (1+(Рпост + Рпер)/ 100), где


Рпост = 2% - постоянные потери в стали трансформатора;

Рпер = 10% - переменные потери в сетях и трансформаторах;

 - максимальное значение нагрузки, кВт;

 - значение реактивной нагрузки в час максимума суммарной нагрузки, кВар.

Максимальное значение активной нагрузки приходится на 9 часов Р=2800 кВт. В это время значение реактивной нагрузки Q=1120 Вар.


ST = (1+(2 + 10)/ 100)=3388 кВ·А.


N - кол-во преобразовательных агрегатов. На тяговой подстанции установлены два преобразовательных агрегата ПВЭ-3, следовательно, N=2.



SH.TP =3377/2=1688,5 кВ·А.


Выбор тягового трансформатора производим по [3], исходя из следующих данных:

-                Номинальная мощность тягового трансформатора должна быть больше SH.TP =1688,5 кВ·А.

-                Номинальное напряжение преобразователя ПВЭ-3 UdH=3,3 кВ.

-                Номинальный ток преобразователя ПВЭ-3 IdH=3000 А.

-                Номинальное напряжение вентильной обмотки тягового трансформатора U2=3,02 кВ.

-                Номинальное напряжение сетевой обмотки – U1=10 кВ.

-                Схема соединения вентильной обмотки – «две обратные звезды с уравнительным реактором».

Исходя из этих данных с учетом перспективы развития ж/д транспорта выбираем два тяговых трансформатора ТМПУ-16000/10 ЖУ-1, каждый из которых будет работать с преобразовательным агрегатом ПВЭ-3.

ТМПУ-16000/10 ЖУ-1 – трансформатор масляный, для полупроводниковых выпрямителей, с уравнительным реактором, мощностью 16000 кВ·А, на на номинальное напряжение сетевой обмотки 10 кВ·А, для ж/д транспорта, для умеренного климата.

Эл. хар-ки тяг. трансформатора ТМПУ-16000/10 ЖУ-1.

-          Ном. U сетевой обмотки U1=10 кВ.

-          Ном. U вентильной обмотки U2=3,02 кВ.

-          Ном. ток преобразователя IdH=3000 А.

-          Ном. U преобразователя UdH=3,3 кВ.

-          Схема соединения первичной обмотки – «звезда».

-          Схема соединения вторичной обмотки – «две обратные звезды с уравнительным реактором».

-          Номинальная мощность тягового трансформатора SH =11400 кВ·А.

Номинальная мощность SH =11400 кВ·А меньше баковой мощности Sб =16000 кВ·А, потому что в баке тр-ра ТМПУ 16000/10, кроме сетевой и вентильной обмотки, размещен уравнительный реактор типа КРОМ-500 – катушка реактивная однофазная масляная.


2.2 Расчет уставок и параметров защит трансформаторов


Опыт эксплуатации показал, что трансформаторы достаточно надежное оборудование и при правильной эксплуатации случаи выхода их из работы сравнительно редки. Являясь основным видом оборудования п/ст. от исправности которого зависит электроснабжение потребителей, трансформаторы должны иметь защиты, исключающие или уменьшающие развитие аварии при возникновении повреждений и ненормальных режимов.

К основным повреждениям трансформаторов относятся: двухфазные и трехфазные короткие замыкания в обмотках и на их наружных выводах; замыкания между витками одной фазы (витковые замыкания); однофазные замыкания на землю обмоток или их наружных выводов.

К ненормальным режимам работы трансформатора относят: протекание по его обмоткам токов выше номинальных при перегрузках и внешних коротких замыканиях (короткие замыкания на шинах низшего напряжения и отходящих от них линий), что приводит к повышению температуры обмоток и масла; понижение номинального уровня масла и др. [6]

Релейной защитой называется устройство состоящее из одного или нескольких реле, реагирующих на ненормальные режимы работы. Защита воздействует на выключатели и они отключают те элементы цепи, которые опасно оставлять в работе. Она также сигнализирует о начале ненормального режима работы (о перегрузке, утечке масла из трансформатора и т.п.).

Релейная защита должна обладать селективностью, быстродействием, чувствительностью и надежностью в работе. Селективность заключается в том, что при срабатывании релейной защиты отключается только поврежденный участок, а неповрежденные элементы остаются в работе, быстродействие необходимо, так как при снижении времени отключения поврежденного элемента уменьшаются размеры его разрушения при коротком замыкании и повышается устойчивость работы системы. Чувствительность - это способность реагировать на все виды повреждений и ненормальных режимов в самом начале их возникновения. Надежность - не должно быть случаев неправильного действия и отказов релейной защиты при ненормальных режимах работы [1]

Релейную защиту выполняют с помощью реле-приборов, способных реагировать на изменение определенного параметра, характеризующего режим работы установки. Различают реле прямого и косвенного действия. Вторые имеют небольшие размеры и на привод выключателя воздействуют через вспомогательную цепь.

Расчет релейной защиты заключается в определении типа защиты, первичного тока срабатывания, тока уставки срабатывания реле, времени срабатывания защиты.

Величина тока (напряжения), при котором начинает срабатывать и замыкать или размыкать свои контакты то или иное реле, называют током (напряжением) срабатывания реле.

Величина параметра, на которую настроено и при которой должно срабатывать реле, называют уставкой срабатывания реле. Величина тока (напряжения), при которой реле начинает возвращаться в исходное состояние, называется током (напряжением) возврата реле. Отношение тока возврата реле к току срабатывания реле называется коэффициентом возврата реле. [6]


2.2.1 Типы применяемых защит трансформаторов

Для выбранного силового трехобмоточного трансформатора ТДТН-20000/110 выбираем следующие типы релейных защит:

1 Дифференциальная защита от всех видов повреждений как внутри трансформатора, так и на его выводах.

2 Газовая защита от повреждений внутри трансформатора.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать