Проектирование тяговой подстанции переменного тока

Проектирование тяговой подстанции переменного тока

Введение

 

Эволюция тяговых подстанций на железных дорогах Франции

В течение последнего десятилетия оборудование тяговых подстанций электрифицированных железных дорог претерпело значительное техническое развитие и преобразование (здесь понятие развития применено к совершенствованию оборудования и материалов, относящихся к так называемой классической электротехнике, а понятие преобразования — к внедрению новых технологий в области силовой электроники), что позволило решить некоторые проблемы, с которыми ранее не приходилось иметь дело. Национальное общество железных дорог Франции (SNCF) использует оба эти пути для улучшения технико-эксплуатационных характеристик систем тягового электроснабжения.

Целью является эволюция систем электроснабжения, в частности тяговых подстанций и их оборудования, для повышения надежности, снижения потребности в техническом обслуживании, ремонте и увеличения мощности, с тем чтобы обеспечить возможность роста объемов перевозок на линиях парижского региона, высокоскоростных и с преобладанием грузового движения.

Развитие традиционного электрооборудования

Здесь имеется в виду оборудование как высокого (63, 90 и 225 кВ), так и среднего напряжения (25 кВ, 50 Гц переменного или 1,5 кВ постоянного тока).

Трансформаторы и автотрансформаторы

С точки зрения изоляции, например при работе на номинальном напряжении 25 кВ, действующими в настоящее время нормативами предусмотрено, что все оборудование, соединенное с контактной сетью, должно сохранять целостность изоляции в пределах 95 – 250 кВ (т. е. выдерживать воздействие в течение 1 мин напряжения 95 кВ промышленной частоты и мгновенного скачка напряжения до 250 кВ, имитирующего удар молнии).

С появлением таких аппаратов, как автотрансформаторы сухого типа, можно увеличить указанные предельные величины по сравнению с приведенными в нормативах. Применение этих аппаратов в будущем имеет хорошие перспективы, поскольку в некоторых местах, например в тоннелях или там, где принята система электроснабжения 2*25 кВ, существуют жесткие экологические ограничения. Наглядным примером может служить базисный тоннель длиной 52 км будущей линии Лион — Турин.

Эта концепция может быть распространена и на трансформаторы малой мощности, не требующие столь высокого уровня изоляции на первичной обмотке, например, рассчитанные на 20 кВ.

Сухие трехфазные трансформаторы уже давно применяются на линиях, электрифицированных на постоянном токе напряжением 1,5 кВ (первичная обмотка на напряжение 20 кВ и две вторичные с соединением треугольник/звезда на 645 В), и следует отметить увеличение числа оснащенных ими тяговых подстанций. Они отвечают нормам по пожарной безопасности, а также по сопротивляемости распространению огня и дыма.

Наиболее современные трансформаторы типа С3 мощностью 7300 кВА, устанавливаемые в настоящее время на подстанциях постоянного тока 1,5 кВ, изготавливаются в герметичном исполнении. Это означает, что в них нет непосредственного соприкосновения масла с воздухом, как в системах с осушителями.

Существуют герметичные трансформаторы двух видов:

с расширителем, который обеспечивает отделение масла от воздуха и оснащен диафрагмой, способной деформироваться и позволять маслу занимать пространство, необходимое при изменениях его объема. Такие трансформаторы устанавливаются с начала 2000-х годов;

с полным заполнением, находящиеся на стадии изучения. В этом варианте трансформатор полностью закрыт, не имеет ни расширителя, ни даже осушителя. Изменение объема масла реализуется через элементы радиатора, которые более эластичны, чем корпус масляной ванны.

Следует отметить, что эти концепции уже реализованы в автотрансформаторах на 25 кВ, применяемых в системе электроснабжения 2*25 кВ, в частности, на высокоскоростной линии TGV Mediterranée.

Вместе с тем полная стандартизация трансформаторов, которыми оснащаются линии, электрифицированные на напряжении 25 кВ, в настоящее время невозможна, так как диапазон требуемых мощностей, который может выйти за пределы 10 кВА, очень широк.

Коммутационная аппаратура

В отношении коммутационной аппаратуры (силовых выключателей и разъединителей) можно отметить, что их развитие следует за ростом интенсивности движения поездов, т. е. они рассчитываются исходя из способности разрывать все более высокие токи. Отсюда одним из направлений эволюции является увеличение размеров аппаратов.

Высоковольтное оборудование

В высоковольтном оборудовании основные нововведения заключаются в интегрировании и экранировании оборудования, скомплектованного в модули.

Интегрированный модуль имеет воздушную изоляцию, но помещен в металлический кожух, что позволяет сделать его более компактным по сравнению с традиционными установками.

Экранированный модуль также размещен в металлическом кожухе, но изоляция обеспечивается шестифторидом серы (элегазом), что позволяет значительно сократить занимаемые площадь и объем. В поставляемых комплектных установках три фазы питания напряжением 63 кВ размещены в одном отсеке, что дает возможность реализовать два высоковольтных ввода и пять средневольтных выходов на площади 100 м2.

Можно видеть, что новые технические решения подходят к электроустановкам, отвечающим жестким экологическим требованиям с точки зрения габаритов, загрязнения атмосферы и т. п., и предлагаются в качестве альтернативы общепринятым, когда это необходимо исходя из условий окружающей среды.

Внедрение силовой электроники

SNCF и администрация инфраструктуры железных дорог Франции Réseau Ferre de France (RFF), поставив задачу оптимизации систем электроснабжения, инвестируют в европейские и национальные программы научных исследований по этой теме.

Целью разрабатываемых систем является отказ от строительства дополнительных подстанций, к стоимости которых прибавляется стоимость подключения к внешним питающим сетям. Для этого новое оборудование, устанавливаемое на существующих подстанциях, должно стоить меньше, чем строительство дополнительных подстанций, при сохранении исходной надежности.

Высоковольтные бустеры

Электроснабжение зон пригородного сообщения, а также обычных линий в целом удовлетворительно обеспечивается тяговыми подстанциями. Однако постоянно повышающиеся мощность электроподвижного состава и интенсивность движения поездов приводят к недопустимому падению напряжения на уровне трансформаторов подстанций, а также в контактной сети, особенно на концах фидерных зон. Для устранения этого явления проведены исследования по полной компенсации внутреннего падения напряжения в тяговых трансформаторах, в результате которых создана система компенсации, названная вольтодобавочной, или бустерной (HVB). Два варианта схемы такой системы, построенной на силовых полупроводниковых приборах, приведены на рисунке.

Схемы бустерной компенсации падения напряжения:
а — схема SVC-TCR ; б — схема SVC-TSC

В настоящее время SNCF использует электромеханическую систему компенсации на первичной обмотке трансформатора. Концепция этой системы изначально предусмотрена для удовлетворения других, не связанных с железными дорогами потребностей и недостаточно хорошо отвечает поставленной задаче, так как с запозданием реагирует на падение напряжения и привносит с собой противоречивые требования по техническому содержанию.

Компенсаторы дисбаланса

Еще во времена проектирования первых тяговых подстанций на 25 кВ, 50 Гц переменного тока возникла проблема их подключения к национальной энергетической сети.

Действительно, тяговые подстанции соединяются с сетью поставщика энергии (государственной компании Èlectricité de France, EDF) двумя фазами из трех, что вызывает нарушение равновесия между фазами (дисбаланс). В случае превышения его допустимого порогового значения обычно принимают решение о приведении дисбаланса в соответствие с принятыми нормами путем строительства новой высоковольтной линии, чтобы согласовать подстанцию с сетью высокого напряжения (225 или 400 кВ).

Однако такое решение зачастую трудноосуществимое и всегда дорогостоящее. Наиболее приемлемым способом решения проблемы является применение компенсаторов дисбаланса, выполненных на элементах силовой электроники (CER), обеспечивающее достижение технико-экономического компромисса. К тому же компенсаторы дисбаланса можно изготавливать в модульном исполнении, что позволяет адаптировать их к неодинаковым нагрузкам разных тяговых подстанций и структуре сети EDF в конкретном регионе. Их использование устраняет необходимость в прокладке новых высоковольтных линий, которые всегда оказывают отрицательное воздействие на чувствительную окружающую среду.

Ограничители токов короткого замыкания

В настоящее время токи короткого замыкания между контактной сетью и рельсами весьма жестко лимитируются сравнительно малой величиной с целью обеспечения совместимости между электроподвижным составом и системой тягового электроснабжения. Это достигается путем искусственного увеличения импеданса трансформаторов тяговой подстанции и, как следствие, сопровождается потерями и падением напряжения на их выводах.

Применение ограничителей токов короткого замыкания позволяет избавиться от этих недостатков, искусственно увеличивая импеданс трансформаторов только в случае короткого замыкания. Это дает возможность делать импеданс тяговых трансформаторов при работе в обычном режиме гораздо меньшим и оптимизировать распределение энергии по сети.


1 Конструкторский раздел, теоретическое и расчетное обоснование

1.1 Расчет мощности тяговой подстанции переменного тока


Мощность понижающих трансформаторов тяговой подстанции переменного тока для испытания тяговой нагрузки определяем по формуле (1):


 (1)


где - напряжение на шинах подстанции 27,5 кВ;

- действующее значение тока наиболее и наименее загруженных плеч питания соответственно;

- коэффициент, учитывающий неравномерность нагрузки фаз трансформатора, равный 0,9;

- коэффициент, учитывающий влияние компенсации реактивной мощности, равный 0,93;

- коэффициент, учитывающий влияние внутрисуточной неравномерности движения на износ изоляции обмоток трансформатора, который для двухпутных путей составляет 1,45.



Мощность СН без АБ и базы масляного хозяйства (БМ):


,


Мощность СН с учетом АБ и МХ и ПОД:



Условие выбора ТСН:


 - условие выполняется.


Электрические характеристики выбранного ТСН сведены в таблицу 1.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать