tgφГ — відповідає відомому cosφГ
tgφMi - приймається рівним tgφГ
tgφC.H. - відповідає відомому cosφ= 0,85.
Для максимального режиму переструми потужності становлять:
де ∑- сумарна активна потужність генераторів, підключених до шин РП, на якому задане навантаження.
РMAX - активне навантаження шин генераторної напруги для мінімального режиму.
∑PC.H - сумарна активна потужність власних потреб, приймається залежно від типу станції ((48)% від ∑PГ)
tgφГ — відповідає відомому cosφГ
tgφMAX - приймається рівним tgφГ
tgφC.H. - відповідає відомому cosφ= 0,85.
Для аварійного режиму перетоки потужності становлять:
де ∑PГ-1 - сумарна активна потужність генераторів, підключених до шин РП, на якому задане навантаження, з обліком того, що один генератор виходить із ладу. РMAX - активне навантаження шин генераторної напруги для мінімального режиму.
∑PC.H - сумарна активна потужність власних потреб, приймається залежно від типу станції ((4 8)% від ∑PГ)
tgφГ - відповідає відомому cosφГ
tgφMAX - приймається рівним tgφГ
tgφC.H. - відповідає відомому cosφ= 0,85.
Для першого варіанта перетоки потужності в трьох режимах складуть:
=71,88 МВА
=53,13 МВА
Для другого варіанта перетоки потужності в трьох режимах складуть:
Через трансформатор зв'язку:
=53,13 МВА
=168,13 МВА
Всі розрахунки зводимо в таблицю 1.4.
Таблиця 1.4 – Перетік потужності через трансформатор зв'язку
Режими |
Рівчак потужності для першого варіанта схеми, МВА |
Рівчак потужності для другого варіанта схеми, МВА |
Мінімальний |
115,63 |
9,38 |
Максимальний |
71,88 |
53,13 |
Аварійний |
53,13 |
168,13 |
Розрахунковий рівень потужності через трансформатор зв'язку Sрасч приймаємо рівним максимальному з обчислених, у першому варіанті – 115,63 МВА (мінімальний режим), у другому варіанті – 168,13 МВА (максимальний режим).
Потужність трансформаторів зв'язку вибирається таким чином, щоб вся наявна на шинах ГРП надлишкова потужність могла бути видана в систему:
∑Sтр.зв'язку ≥ Sпер.мах
де ∑Sтр.зв'язки - сумарна потужність трансформаторів зв'язку;
Sпер.мах - максимальна величина рівчака.
Потужність трансформатора зв'язку, (Sтр.зв'язку), знаходимо з умови:
де кп - коефіцієнт припустимого перевантаження, що враховує можливе аварійне перевантаження трансформатора на 40 %, кп = 1,4.
Перший варіант:
≥
40 ≥ 82,59
Вибираємо автотрансформатор типу АТДЦТН-125000/220/110/10
Номінальна потужність - SHOM = 125 MBA
Напруга обмотки: - UBH =230кв, UCH =110кв UHH = 10,5 кВ
Втрати - Рхх = 65 кВт, РKЗ = 315 кВт
Uк.вн-сн =11 % Uк.вн-нн =45%, UK.CH -HH =28%, IХХ = 0,4%
Вартість трансформатора - 4983 млн. грн.
Другий варіант:
≥
≥ 120,09
Також вибираємо трьохобмоточний трансформатор типу АТДЦТН-125000/220/110/10
Вибiр двохобмоточного трансформатора:
≥
≥ 120,09
Вибираємо двухобмоточний трансформатор типу ТЦ-160000/220/10
Номінальна потужність - SHOM = 160 MBA
Втрати - Рхх = 125 кВт, РKЗ = 465 кВт, Uк =10,5 %, IХХ = 0,5%
Вартість трансформатора -5850 тис. грн.
Після вибору числа і потужності трансформаторів головної схеми визначається число приєднань у кожному РП і варіанти схем РП. На підставі техніко-економічного зіставлення декількох варіантів схем визначається оптимальний варіант.
1.4 Вибiр секцiйних реакторiв
де -номiнальний струм генератора, А
Вибираємо реактор типу РБДГ 10-4000-0,18 У3: =3200А
Номінальний індуктивний опір Х=0,18 Ом
Номiнальнi втрати =27,7 кВт
Струм динамічної стiйкостi =79 кА
Струм термічної стiйкостi =65 кА, =8с
1.5 Вибiр лiнiйних реакторiв
де - максимальне значення активної потужності навантаження на генераторній напрузі, МВт
- номінальна напруга секцii ГРП, кВ
924 А
Вибираемо реактор типу РБДГ 10-2500-0,35 У3: =2000А
Номінальний індуктивний опір Х=0,35 Ом
Номiнальнi втрати =20,5 кВт
Струм динамічної стiйкостi =37 кА
Струм термічної стiйкостi =14,6 кА ;=8с
1.6 Техніко-економічний аналіз обраних варіантів структурних схем
Критерієм оптимальності одного із прийнятих до розгляду варіантів схем електричних з'єднань, у порівнянні з іншими варіантами схем, за умови дотримання всіх технічних вимог, пропонованим до них (надійність, гнучкість, зручність обслуговування, забезпечення належної якості електроенергії і т.д.), є мінімум наведених витрат.
При техніко-економічному порівнянні обраних варіантів обраних схем необхідно розрахувати:
- наведені витрати;
- капіталовкладення;
- річні експлуатаційні витрати;
- річні амортизаційні відрахування;
- річні витрати на обслуговування;
- вартість річних втрат енергії.
За результатами техніко-економічного розрахунку зробимо виводи і приймемо головну схему станції, у відповідності техніко-економічним показникам.
В техніко-економічному розрахунку необхідно розрахувати показники для обраних схем станцій.
Економічна доцільність головної схеми станції визначається мінімальними наведеними витратами:
3 = Рн К + И
де Рн - нормативний коефіцієнт ефективності капіталовкладень, установлений директивними органами.
Рн = 0,1 - нові, знову проектовані об'єкти;
К - капіталовкладення на установку електроустаткування, тис. грн.
И- річні витрати (експлуатаційні витрати).
Річні експлуатаційні витрати визначаються:
I = Iа+ Io+ Inom
де Iа - річні амортизаційні відрахування.
Iо - річні витрати на обслуговування (ремонт і заробітна плата).
Inom - вартість річних втрат електроенергії.
Річні амортизаційні відрахування:
Iа=Ра · К
де Ро — норма відрахувань на амортизацію (у відсотках)
Ро = 15% -для електричних станцій
Вiдрахування на обслуговування:
Iо=Ро · К
де Ро=2,5%
Вартість річних втрат енергії в трансформаторах і автотрансформаторах:
де - річні втрати електроенергії в трансформаторах і автотрансформаторах;
- вартість 1 кВт/година втрат електроенергії, (с= 8 коп/кВт -для електричних станцій);
Річні втрати електроенергії у двухобмоточному трансформаторі ,кВт*год:
=
де та - втрати активної потужності холостого ходу і короткого замикання в трансформаторі при номінальній потужності.
t- кількість годин роботи трансформатора протягом року.
— час максимальних втрат
- потужність, що проходить через трансформатор протягом тривалого (нормального) режиму.
Річні втрати електроенергії у трьохобмоточному трансформаторі ,кВт*год:
=
Річні втрати електроенергії у струмообмежуючих реакторах,кВт*год:
Де - номiнальнi втрати у реакторі на одну фазу, кВт
- максимальне струмове навантаження гілки реактора, А
- довго допустимий струм при природному охолодженні, А
- час включення реактора, год
Послу розрахунку техніко-економічних показників складається таблиця, де рівняється економічна доцільність обраних схем електростанції.
Устаткування |
Вартість одиниці, тис.грн · |
Вартість головної схеми |
|||
Перший |
Другий |
||||
Кількість шт. |
Загальна вартість, тис. грн |
Кількість, шт. |
Загальна вартість, тис. грн |
||
Комірки ВРП 220 кВ |
1640 |
9 |
14760 |
9 |
14760 |
Комірки ВРП 110 кВ |
1200 |
8 |
9600 |
8 |
9600 |
АТДЦТН-125000\220 110\10,5 |
4983 |
2 |
9966 |
2 |
9966 |
ТЦ-160000\220 |
|
|
|
|
|
ТЦ-160000\110 |
|
|
|
|
|
РАЗОМ: |
|
|
|
|
|
НАВЕДЕНІ ВИТРАТИ |
|
|
|
|
|
1.7 Обґрунтування головної схеми електричних з'єднань електричної станції
Головна схема електричних з'єднань електростанції вибирається на підставі декількох технічних прийнятних варіантів, які відповідають основним вимогам, пропонованим до схем - надійність, оперативна гнучкість, економічність, оптимальний рівень струмів короткого замикання, можливість розширення, зручність і безпека розширення, необхідність видачі всієї потужності.