Проверочный расчет типа парового котла
Содержание
Введение
1. Исходные данные
2. Выбор способа шлакоудаления
3. Выбор расчетных температур
4. Расчет объемов воздуха и продуктов сгорания
5. Объемы продуктов горения в поверхностях нагрева
6. Расчет энтальпий воздуха и продуктов сгорания
7. Расчет КПД котла и потерь в нем
8. Определение расхода топлива
9. Тепловой расчет топочной камеры
10. Тепловой расчет остальных поверхностей нагрева
10.1 Расчет ширмового ПП
10.2 Расчет фесона
10.3 Расчет конвективного ПП
10.3.1 Расчет ПП 1 ступени
10.3.2 Расчет ПП 2 ступени
10.4 Расчет ВЭК и ВЗП
10.4.1 Расчет ВЭК 2 ступени
10.4.2 Расчет ВЗП 2 ступени
10.4.3 Расчет ВЭК 1 ступени
10.4.4 Расчет ВЗП 1 ступени
11. Определение неувязки котлоагрегата
Список используемой литературы
Введение
Паровой котел - это основной агрегат тепловой электростанции (ТЭС). Рабочим телом в нем для получения пара является вода, а теплоносителем служат продукты горения различных органических топлив. Необходимая тепловая мощность парового котла определяется его паропроизводительностью при обеспечении установленных температуры и рабочего давления перегретого пара. При этом в топке котла сжигается расчетное количество топлива.
Номинальной паропроизводительностью называется наибольшая производительность по пару, которую котельный агрегат должен обеспечить в длительной эксплуатации при номинальных параметрах пара и питательной воды, с допускаемыми по ГОСТ отклонениями от этих величин.
Номинальное давление пара - наибольшее давление пара, которое должно обеспечиваться непосредственно за пароперегревателем котла.
Номинальные температуры пара высокого давления (свежего пара) и пара промежуточного перегрева (вторично-перегретого пара) - температуры пара, которые должны обеспечиваться непосредственно за пароперегревателем, с допускаемыми по ГОСТ отклонениями при поддержании номинальных давлений пара, температуры питательной воды и паропроизводительности.
Номинальная температура питательной воды - температура воды перед входом в экономайзер, принятая при проектировании котла для обеспечения номинальной паропроизводительности.
При изменении нагрузки котла номинальные температуры пара (свежего и вторично-перегретого) и, как правило, давление должны сохраняться (в заданном диапазоне нагрузок), а остальные параметры будут изменяться.
При выполнении расчета парового котла его паропроизводительность, параметры пара и питательной воды являются заданными. Поэтому цель расчета состоит в определении температур и тепловосприятий рабочего тела и газовой среды в поверхностях нагрева заданного котла. Этот тепловой расчет парового котла называется поверочным расчетом.
Поверочный расчет котла или отдельных его элементов выполняется для существующей конструкции с целью определения показателей ее работы при переходе на другое топливо, при изменении нагрузки или параметров пара, а также после проведенной реконструкции поверхностей нагрева. В результате поверочного расчета определяют:
- коэффициент полезного действия парового котла;
- расход топлива;
- температуру продуктов сгорания по газовому тракту, включая температуру уходящих газов;
- температуру рабочей среды (пара, воды) за каждой поверхностью нагрева.
Надежность работы поверхности нагрева устанавливают расчетом ожидаемой температуры стенки и сравнением ее с допустимой для использованного металла. Для выполнения расчета приходится предварительно задаваться температурой уходящих газов и температурой горячего воздуха, правильность выбора которых определяется лишь по завершении расчета.
Задание на поверочный расчет включает в себя следующие данные:
- тип парового котла (его заводская маркировка);
- номинальную паропроизводительность (Dnп, т/ч (кг/с)) и параметры перегретого пара (первичного (Рпп, МПа, tnп, °C) и вторичного перегрева);
- месторождение и марку энергетического топлива;
- температуру питательной воды (tnв, °C), поступающей в котел после регенеративного подогрева, и дополнительно - конструктивные данные поверхностей котла. По этому расчету предшествует определение по чертежам геометрических характеристик поверхностей (диаметров и шагов труб, числа рядов труб, размеров проходных сечений для газов и рабочей среды, габаритных размеров газоходов и поверхностей нагрева и т. д.). При поверочном расчете котла вначале определяют объемы и энтальпии воздуха и продуктов сгорания, КПД и расход топлива, а затем выполняют расчет теплообмена в топочной камере и других поверхностях в последовательности, соответствующей их расположению по ходу газов.
При поверочном расчете поверхности нагрева приходится задаваться изменением температуры одной из теплообменивающихся сред (разностью температур на входе и выходе). Этим определяется тепловосприятие поверхности в первом приближении. Далее можно вычислить температуры другой среды на концах поверхности нагрева, температурный напор, скорости газового потока и рабочей среды и все другие величины, необходимые для вычисления тепловосприятия во втором приближении. При расхождении принятого и расчетного тепловосприятий выше допустимого повторяют расчет для нового принятого тепловосприятия. Таким образом, поверочный расчет поверхности нагрева выполняют методом последовательных приближений.
1. Исходные данные
Таблица 1 – Таблица исходных данных
Тип котла |
БКЗ-320-140 |
Паропроизводительность Dпп |
315 т/ч |
Давление перегретого пара Рпп |
13,9 МПа |
Температура перегретого пара tпп |
545оС |
Температура питательной воды tпв |
240оС |
Месторождение топлива |
Куучекинская Р. |
Температура начала деформации |
1230 оС |
Температура размягчения |
>1500 оС |
Температура плавкого состояния |
>1500 оС |
Состав топлива |
2. Выбор способа шлакоудаления и типа углеразмольных мельниц
Определяем приведенную зольность топлива:
Исходя из значения температуры плавления золы t3 >1500°C и приведенной зольности топлива, согласно рекомендациям [1, с.11] принимаем твердое шлакоудаление и волковые среднеходные мельницы СМ.
3. Выбор расчетных температур по дымовым газам и воздуху
тогда согласно рекомендациям [1, с.13-15 и таблиц 1.4;1.5;1.6] принимаем:
температура уходящих газов Vуг =120°C
температура подогрева воздуха tгв =300°C
температура воздуха на входе в воздухоподогреватель tВП =20°C
4. Расчет объемов воздуха и продуктов сгорания
4.1 Теоретический объем воздуха
4.2 Теоретические объемы продуктов сгорания
Расчеты выполнены по рекомендациям [1, с.20-21]
5. Объемы продуктов сгорания в поверхностях нагрева
Таблица 2 - Таблица объемов продуктов сгорания в поверхностях нагрева
Наименование величин |
Топка, ширма |
ПП II |
ПП I |
ВЭК II |
ВЗП II |
ВЭК I |
ВЗП I |
1. Коэффициент избытка воздуха за поверхностью нагрева |
1,2 |
1,23 |
1,26 |
1,28 |
1,31 |
1,33 |
1,36 |
2. Средний коэффициент избытка воздуха |
1,2 |
1,215 |
1,245 |
1,27 |
1,295 |
1,32 |
1,345 |
3. Суммарный присос воздуха |
0,8608 |
0,9254 |
1,0545 |
1,1621 |
1,2697 |
1,3773 |
1,4849 |
4. Действительный объем водяных паров |
0,4586 |
0,4596 |
0,4617 |
0,4634 |
0,4651 |
0,4669 |
0,4686 |
5.Полный объем газов , |
5,50672 |
5,5713 |
5,7004 |
5,8080 |
5,9156 |
6,0232 |
6,1308 |
6. Объемная доля трехатомных газов |
0,1443 |
0,1428 |
0,1395 |
0,1369 |
0,1314 |
0,1321 |
0,1297 |
7. Объемная доля водяных паров |
0,0807 |
0,0798 |
0,0780 |
0,0766 |
0,0752 |
0,0738 |
0,0725 |
8. Суммарная объемная доля |
0,2250 |
0,2226 |
0,2175 |
0,2135 |
0,2097 |
0,2059 |
0,2022 |
9. Масса дымовых газов |
7,3364 |
7,4207 |
7,5893 |
7,7299 |
7,8704 |
8,0109 |
8,1515 |
10. Безразмерная концентрация золовых частиц |
0,0557 |
0,0669 |
0,0671 |
0,0672 |
0,0673 |
0,0674 |
0,0675 |
11. Удельный вес дымовых газов |
1,3322 |
1,33195 |
1,3314 |
1,3309 |
1,3304 |
1,3300 |
1,3296 |