Радиоактивные изотопы и соединения

Радиоактивные изотопы и соединения

Радиоактивные изотопы и соединения, меченные радиоактивными изотопами, широко применяются в самых разных областях человеческой деятельности. Промышленность и технологический контроль, сельское хозяйство и медицина, средства связи и научные исследования — охватить весь спектр применения радиоактивных изотопов практически невозможно, хотя все они возникли чуть более, чем за 100 лет. Представленный ниже материал посвящён использованию радиоактивных изотопов в различных молекулярно-биологических исследованиях и является учебно-методическим пособием, а не строгой научной публикацией. К сожалению, значительная часть начинающих молодых ученых, работающих в области life science, представляет себе специфику работ с радиоактивными веществами поверхностно и фрагментарно. Это неудивительно, так как в России образование на медицинских и биологических факультетах не дает ни основных теоретических представлений о радиоактивности, ни практических навыков в этой области. У химиков ситуация лучше, потому что некоторые основные понятия о природе радиоактивности входят в учебную программу.
Хотя представленный материал рассчитан на малоподготовленного читателя, надеюсь, что он может оказаться полезным и для профессионалов.



1. Основные понятия и терминология

Радиоактивность (radioactivity) — это обозначение удивительного явления природы, открытого Беккерелем в конце XIX века, суть которого заключается в самопроизвольном спонтанном превращении атомных ядер некоторых элементов в другие, которое сопровождается выделением трёх видов "лучей". Природу лучей установили быстро: α-лучи — это двукратно ионизированные атомы гелия, β-лучи — это электроны, γ-лучи — это жесткое коротковолновое электромагнитное излучение. Элементы, способные к таким превращениям стали называться радиоактивными, т.е. способными к этому превращению. В зависимости от типа излучения, радиоактивные атомы стали определять соответственно как α, β или γ излучатели или источники. Правда, вскоре было установлено, что некоторые радиоактивные атомы излучают сразу два (а возможно, и три) вида лучей, поэтому такая классификация дополняется пояснениями — это "чистый" α-излучатель или имеется сопутствующее γ-излучение. К первоначальным трём типам ядерных превращений (α, β и γ — радиоактивный распад) добавились новые, однако, общие закономерности для всех остались неизменными. В конце ХХ века было рекомендовано термин "изотоп" заменить на "нуклид" и, соответственно, "радиоактивный изотоп" на "радионуклид". Особенно широкого распространения это нововведение не получило, и оба термина используются в научной литературе как синонимы.

Количественная характеристика радиоактивности получила у физиков название "активность" (activity). Так как физикам никто не давал монопольного права на термин "активность", то со временем выяснилось, что в разных областях науки под "активностью" понимают совсем разные понятия. Сравните: активность радиоактивного изотопа, химическая активность элемента или соединения, энзимологическая активность фермента, биологическая (например, антивирусная) активность препарата — всё это совершенно различные понятия. Сближение различных научных дисциплин ещё больше запутывает положение. Попробуйте охарактеризовать фермент, меченный радиоактивным изотопом углерода-14. Активность такого фермента — это его энзимологическая характеристика или радиоактивная? Поэтому в современной научной литературе (особенно биологической) все чаще термин "активность" для радиоактивных веществ заменяется термином "радиоактивность".

За единицу активности (радиоактивности) радиоактивного вещества в Международной системе СИ принята скорость радиоактивного распада, равная 1 распаду в секунду, которая получила название беккерель — Бк (в английской версии Bq). Устаревшая, но по-прежнему используемая единица активности кюри — Ки (в английской версии Ci) — это активность препарата, эквивалентная активности 1 г металлического радия-226 и равная 3,7х1010 распадов в секунду, т.е. 3,7х1010 Бк.

Строго говоря, радиоактивный распад — это превращение ядра атома радиоактивного элемента, которое сопровождается выделением продуктов такого превращения. Например, электронный захват представляет собой поглощение электрона ядром с выделением γ-кванта, и такой тип "радиоактивного распада" более точно следует называть "ядерным превращением". Впрочем, оба термина используются в литературе на равных, несмотря на предпочтительность "ядерного превращения".

Основной закон радиоактивного распада описывается замечательной формулой:

Nt = N0e-λt

где:
      Nt — количество распавшихся радиоактивных атомов;
      N0 — начальное количество радиоактивных атомов;
      е — основание натурального логарифма;
      λ — константа скорости радиоактивного распада;
      t — время.

На практике для работы ею никто не пользуется, однако, из этой формулы следует сразу несколько довольно простых, но очень важных выводов и следствий, которые надо знать всем работающим с радиоактивными изотопами:

1.                        Количество радиоактивных атомов, распавшихся за некоторое время наблюдения, зависит только от их исходного количества и времени наблюдения (распада). Никакие другие параметры: астрономические, физические, химические, парапсихологические и "волшебные" на радиоактивный распад не влияют. Константа скорости радиоактивного распада [ λ ] (иногда ее называют константой распада) определяется только природой изотопа и для каждого изотопа имеет свою величину. Все попытки замедлить радиоактивный распад охлаждением (даже в жидком азоте) или ускорить распад нагреванием абсолютно бессмысленны. Вы можете влиять на стабильность химического соединения, меняя температуру его хранения, но количество радиоактивных атомов в препарате при этом не изменится.

2.                        Скорость радиоактивного распада меняется по экспоненте (т.е. нелинейно), и рассчитывать количество радиоактивного материала в вашем препарате надо с учетом этого факта, пользуясь либо вышеприведенной формулой, либо соответствующими таблицами распада (что обычно и делают на практике).

3.                        Представьте себе, что в формуле радиоактивного распада Nt = 1/2 N0 , т.е. распалась ровно половина радиоактивных атомов, содержащихся в препарате. Время этого процесса — константа Т1\2 — называется периодом полураспада. Физический смысл — время, за которое распадается половина радиоактивных атомов данного изотопа. Эта величина весьма полезна для работающих с радиоактивностью, т.к. позволяет быстро оценить "потери на распад" препарата.

4.                        Физический смысл константы скорости радиоактивного распада [ λ ] — это активность 1 моля (или ммоля) 100% радиоактивного изотопа и соответственно размерность этой константы — Бк/моль (Bq/mol) или Ки/ммоль (Ci/mmol). То есть, это теоретически достижимая молярная активность (активность одного моля радиоактивного вещества), знание которой позволяет оценить чувствительность метода и качество радиоактивного препарата. Ниже об этом будет сказано подробнее.

 

2. Детекция и количественные измерения радионуклидов

Детектирование радиоактивного распада основано на его различных физических свойствах:

5.                        способность взаимодействовать с кристаллами бромистого серебра, засвечивая светочувствительные материалы, — авторадиография,

6.                        способность вызывать "свечение" при столкновении продуктов распада с некоторыми веществами — сцинтилляция,

7.                        способность ионизировать молекулы окружающей среды продуктами радиоактивного распада — ионизация,

8.                        способность вызывать дефекты в кристаллических решетках,

9.                        способность осуществлять (или катализировать) некоторые химические реакции.

Все эти способности были задействованы при создании различных измерительных приборов и индикаторов различного назначения. Однако, для измерения активности, т.е. количества ядерных превращений в единицу времени, наиболее широкое распространение получили приборы, основанные на использовании сцинтилляции или ионизации. При этом в life science используют, как правило, сцинтилляционные приборы и авторадиографию, а для физических, инженерных и медицинских работ — приборы, измеряющие ионизацию среды. Впрочем, такое разделение весьма условно, так как разнообразных приборов и средств измерений было создано за 100 лет очень много.

Следует особо выделить приборы для измерения ионизирующей способности излучения. Это важнейшая составляющая контроля за облучением персонала, работающего с источниками ионизирующего излучения (в том числе и с радиоактивными веществами). Контроль за радиационной обстановкой осуществляется по особым правилам, и краткая информация о нормах радиационной опасности и единицах, в которых эти нормы установлены. Пока следует подчеркнуть, что активность радиоактивного препарата и радиационная обстановка возле этого препарата — это совершенно разные характеристики, например, как масса вещества и его твердость. Единицы активности (Бк или Ки) говорят о количестве ядерных превращений в единицу времени. Наиболее популярная единица экспозиционной дозы для γ- (рентгеновского) излучения — рентген (Р) — говорит о величине потока ионизирующего излучения (потока энергии), проходящего через слой сухого воздуха и вызывающего ионизацию определенного числа молекул воздуха. Поэтому никакой прямой связи между этими величинами нет. Большая часть радионуклидов, которые используются в life science (об этом ниже), вообще никак не может быть охарактеризована термином экспозиционная доза, который введен для γ- (рентгеновского) излучения.

Страницы: 1, 2, 3, 4, 5, 6, 7



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать