Радиоактивные изотопы и соединения

Вообще, саморадиолиз соединений, меченных фосфором-32 или фосфором-33, очень неудобное для работы явление, и его надо учитывать. Без радиопротекторов меченные фосфором-32 соединения в концентрированном растворе (более 15 мКи/мл) могут храниться очень недолго, а в сухом виде оставлять их дольше нескольких часов не следует, т.к. скорость химических превращений, под действием ионизирующего излучения в этом случае очень высокая.

Основное отличие фосфора-33 от фосфора-32 заключается в энергии β-излучения этих радионуклидов, т.к. различие в периоде полураспада менее чем в 2 раза несущественно. При этом преимущество более слабого излучения фосфора-33 (кроме психологического комфорта) проявляется только при необходимости авторадиографии с высоким разрешением близко расположенных меченых продуктов, например, автограф геля после электрофоретического разделения меченых фрагментов нуклеиовых кислот. Действительно, эффективность "ручного радиоактивного" сиквенса определялась разрешающей способностью электрофоретического разделения продуктов реакции терминации синтеза ДНК (в методе Сэнгера) или фрагментов химического расщепления [5'-32P]-одноцепочечной ДНК (по Максаму-Гилберту). Для 32Р-меченых фрагментов с одного геля квалифицированный специалист мог "прочитать" 350÷400 нуклеотидов. "Зубры" секвенирования ДНК в Москве и Новосибирске довели эту величину до 700 нуклеотидов. Однажды, автору этого обзора в новосибирском Академгородке с гордостью продемонстрировали автограф геля, с которого удалось "прочитать" почти 750 нуклеотидов. В научном фольклоре встречались даже более высокие величины (вплоть до 1000), однако, таких задокументированных результатов я не встречал. Переход на фосфор-33 только за счет более мягкого β-излучения сразу увеличивал разрешение в 1,5÷2 раза и, следовательно, повышал производительность труда при сиквенировании ДНК. Впрочем, автоматические секвенаторы ДНК, использующие флюоресцентную метку, полностью прекратили эту гонку за производительностью "ручного сиквенса" с использованием радиоактивных изотопов.

 

9. Радионуклид 35S

Наработка радионуклида серы-35 проводится в ректоре облучением KCl или NaCl по реакции 35Cl + 0n —> 35S + 1p в виде 35S-сульфата. Некоторые специфические методики приготовления образцов KCl для облучения позволяют получать 35S в виде элементарной серы. Схема распада серы-35: 35S —> 35Cl + e . Удобный период полураспада и вполне приемлемая энергия β-излучения делают серу-35 очень популярным радионуклидом в своей "нише", вызывая досаду малой распространённостью соединений серы в живых организмах.

В life science сера-35 используется, в основном, для введения "метки" в белок за счет 35S-метионина или (реже) 35S-цистеина. Аминокислоты, меченные серой-35, получают биосинтезом, выращивая бактериальную биомассу на среде, содержащей 35S-сульфат. После кислотного гидролиза 35S-биомассы из белкового гидролизата выделяют аминокислоты. Иногда фирмы-производители вместо индивидуальных 35S-аминокислот предлагают просто 35S-белковый гидролизат, который может быть использован для выращивания культуры клеток в 35S питательной среде.

В 80-х годах ХХ-века на пике бума секвенирования ДНК с помощью радиоактивных изотопов фирма Амершам предложила использовать вместо нуклеозид-5'-трифосфатов, меченных фосфором-32 (или 33), нуклеозид-5'-трифосфаты, меченные серой-35 по фосфатной группе, т.е. 35S- тиофосфаты. Однако, несмотря на широкую рекламу, большого распространения этот вариант секвенирования ДНК так и не получил. Во-первых, работа с радиоизотопами фосфора была привычней, а при массовой работе и регулярных поставках "свежей метки" надежней. Во-вторых, появившиеся вскоре флюоресцентные автоматические секвенаторы сделали это направление просто ненужным. Тем не менее, в арсенале life science остались нуклеозид-5' - [γ-35S] тиотрифосфаты и нуклеозид-5' - [α-35S] тиотрифосфаты для решения специальных задач, например, энзимологии протеинкиназ или энзимологии биосинтеза (деградации, коррекции) нуклеиновых кислот.

Главным недостатком соединений, меченных серой-35, которые используются в life science, является их низкая химическая стабильность. При том, что процессы радиолиза для этих соединений менее критичны, чем для трития или фосфора-32, 35S аминокислоты и тиотрифосфаты легко окисляются, поэтому их важно хранить при -20°С (лучше -70°С) и контролировать чистоту перед использованием.

 

10. Радионуклид 125I

Среди радиоактивных изотопов йода самым популярным для исследовательских работ в life science является 125I. Это реакторный изотоп, получающийся из стабильного изотопа ксенон-124. Среди радионуклидов в таблице, приведенной в разделе 4, йод-125 единственный γ-излучатель, хотя тип распада (точнее ядерного превращения) — электронный захват, в результате которого йод превращается в теллур с выделением γ-кванта. Йод-125 — очень удобный для детекции радионуклид. Во-первых, его можно измерять сцинтилляционным γ-счетчиком (не путайте с жидкостным сцинтилляционным β-счетчиком), и весь радиоиммуноанализ в пробирочном варианте был построен на этих измерениях. Во-вторых, йод-125 прекрасно детектируется авторадиографически на рентгеновской пленке или "электронной авторадиографией" с помощью имиджера. Наконец, йод-125 можно измерять на жидкостном сцинтилляционном β-счетчике во флаконе с сцинтиллятором, как тритиевый образец, за счет электронов Оже.

Несмотря на широкое применение йода-125 в life science, собственно 125I-меченные соединения почти не используются. Правильнее говорить об использовании йода-125 для "мечения" биологических макромолекул, т.е. получения меченых соединений второй группы — модифицированных соединений (см. раздел 3). Поэтому самым востребованным соединением йода-125 в life science является раствор йодистого калия — K125I — исходный материал для введения радионуклида в нужную молекулу.

Основным "потребителем" йода-125 являются исследования белков и пептидов. Традиционно йодирование белков проводят в нейтральной или слабокислой среде в присутствии окислителя, который окисляет йодид, обеспечивая его реакцию с аминокислотными остатками белка. Легче всего йод присоединяется по остаткам тирозина и гораздо хуже — по остаткам фенилаланина, триптофана или гистидина. Йодированный тирозиновый остаток практически не меняет физико-химические и иммунологические свойства белка, что очень важно для дальнейшего использования меченого препарата. В качестве окислителя использовались самые различные агенты: хлорамин Т, "йодоген", перекись водорода с лактопероксидазой и даже катод полярографа (при электрохимическом окислении). Каждый метод имеет свои особенности, но общий недостаток для всех — это окисление, которое для многих белков приводит к потере (или изменениям) ими своих свойств и функций. Даже кратковременное воздействие окислителя (реакция с хлорамином Т длится обычно 30÷40 сек.) для многих белков недопустимо. Поэтому был предложен реагент Болтона-Хантера — реагент, ацилирующий свободные аминогруппы белков. Такая модификация белка проходит без окисления, однако ацилирование аминогруппы меняет физико-химические характеристики исходного белка и может значительно изменить его иммунологические свойства. Особенно это касается небольших молекул, например, пептидов, где количество антигенных детерминант ограничено размерами самой молекулы.

Тем не менее, йодирование белков и пептидов йодом-125 широко используется для различных исследований, особенно иммунологических, рецепторных, гормональных и др. Такие 125I-меченные пептиды также используются для исследований, связанных с распределением пептидов по органам и тканям экспериментальных животных и их фармакокинетике.

Были предприняты попытки использовать 125I для исследований нуклеиновых кислот. Действительно, можно "пройодировать" ДНК, используя хлорид таллия и K125I, для введения "метки" по остаткам цитидина (образуется 5-йодцитидин). Можно вводить 125I в ДНК за счет ферментативного синтеза, используя ДНК-полимеразу и [5-125I] цитидин-5' трифосфат - 125I-аналог dCTP. Тем не менее, широкого распространения эти методики не получили, так как особых преимуществ у 125I перед 32Р нет. Кроме того, высокомеченная 125I ДНК гораздо быстрее деградирует под действием продуктов радиолиза и электронов Оже, чем ДНК, меченная фосфором-32 или фосфором-33.

 

11. Основы радиационной безопасности

Всем, кто работает с источниками ионизирующего излучения, в том числе с радиоактивными веществами, приходится получать допуск к работе: проходить медкомиссию и сдавать экзамен по знанию норм и правил радиационной безопасности. Возможно, самым ярким примером тесного переплетения фундаментальных академических исследований и утилитарно-прикладных разработок являются правила работы с источниками ионизирующего излучения. Вся информация для проведения работ с радиоактивными веществами изложена в двух основных документах: "Нормы радиационной безопасности" (НРБ) и "Основные санитарные правила" (ОСП). Эти скучные строгие документы существуют уже более 30-ти лет. Регулярно (примерно раз в 10 лет) информация в этих документах обновляется в соответствии с развитием радиобиологических и биофизических исследований, вносятся изменения, иногда весьма серьезные, но общая структура документов не меняется. НРБ устанавливает нормативы по всем параметрам, связанным с радиоактивностью: дозы и уровни облучения, содержание различных радионуклидов в воде, воздухе и т.д., уровни загрязнения радионуклидами и пр. Следует подчеркнуть, что это не военно-технический или медико-терапевтический документ, а общие нормы, установленные для всех организаций и лиц, постоянно работающих с источниками ионизирующего излучения, в том числе с радиоактивными веществами.

Хотя в НРБ и ОСП даны кратко определения основных терминов и понятий, ниже я попытаюсь упрощенно систематизировать эту информацию для начинающих работать с радиоактивными веществами.

Экспозиционная доза — энергетическая характеристика γ- и рентгеновского излучения, которая оценивается по эффекту ионизации сухого атмосферного воздуха. Единица экспозиционной дозы рентген - поток γ- или рентгеновского излучения, который в 1 см3 сухого воздуха образует 2х109 пар ионов. Эта самая популярная единица измерения в дозиметрии, хотя и является устаревшей и внесистемной.

Поглощенная доза — собственно это и является характеристикой опасности излучения, так как определяется как отношение поглощенной энергии ионизирующего излучения к массе облученного вещества. Единицы поглощенной дозы — рад и грей. Рад — это внесистемная (но популярная) единица — rad (radiation absorbed dose) — равна 100 эрг/г. Грей — единица в системе СИ, равная 1 дж/кг. Значит, 1 Гр (грей) равен 100 рад.

Эквивалентная доза — произведение поглощенной дозы излучения на некий коэффициент качества излучения, учитывающий неблагоприятные биологические последствия. Единицы измерения — бэр и зиверт. Бэр - биологический эквивалент рентгена (иногда говорят рада) — доза любого вида ионизирующего излучения, производящая такое же воздействие на биологические объекты как доза γ- или рентгеновского излучения в 1 Р (рентген). В системе СИ принят зиверт — эквивалентная доза, соответствующая поглощенной доза в 1 Гр (грей) с коэффициентом качества 1.

Эффективная доза — величина, используемая для оценки меры риска возникновения отдаленных последствий облучения всего тела человека и его отдельных органов и тканей с учетом их радиочувствительности.

Вся эта "голубая муть" на дозовую тему для нормальной работы, конечно, не нужна. Тем более для работы в life science. Дозиметрические приборы (точнее, приборы радиометрического контроля) меряют или мощность экспозиционной дозы γ- или рентгеновского излучения (в миллирентгенах в час), или поток β-частиц с поверхности (количество частиц в сек. на 1 см2). Собственно поглощенная работником доза обычно измеряется специальными индивидуальными дозиметрами разных систем: ионизационными — типа ДП-22В, фотокасетными (количественная авторадиография) и даже современными термолюминисцентными. Однако, все замеры всеми типами дозиметров всегда показывали, что для работающих в life science, поглощенные дозы бесконечно малы и не могут быть достоверно измеряны существующими приборами.

Порядок работы с радиоактивными веществами определен в ОСП. Последняя редакция этого документа называется "Основные санитарные правила обеспечения радиационной безопасности" (ОСПОРБ-99), и название полностью соответствует содержанию. В ОСПОРБ-99 не только подробно изложен порядок работы с любыми радионуклидами, но и порядок их получения (передачи) от других организации, порядок списания источников и сдачи радиоактивных отходов и многое другое. Согласно классификации работ с радиоактивными веществами в этом документе в зависимости от уровня опасности, все исследования с радиоактивными изотопами в life science относятся к третьему (самому низкому) классу радиационной опасности. Эта "классность" работ определяется, во-первых, количеством радионуклида на рабочем месте, а во-вторых, "радиотоксичностью" радионуклида и характером работ по его использованию. Радиотоксичность — понятие, введенное для оценки вреда, который может нанести радионуклид человеку, и зависит от типа распада, энергии излучения, периода полураспада и способности радионуклида усваиваться организмом. Все радионуклиды разбиты на четыре группы радиотоксичности: А (самая опасная), Б, В, и Г (наименее опасная). Из радионуклидов, указанных в таблице 1, самым "вредным" является фосфор-32 — группа Б.

Опасность радионуклида при внешнем облучении определяется характером и энергией излучения. Для всех "мягких" β-излучателей (для life science радионуклидов из таблицы 1: тритий, углеров-14, фосфор-33, и сера-35) опасность минимальна. Электронный поток задерживается листом плотной бумаги, резиновыми хирургическими перчатками и т.д. Сложнее с фосфором-32. Кроме излучения высоко энергетических электронов для фосфора-32 характерно "тормозное излучение" — вторичное электромагнитное излучение, возникающее при торможении электрона в плотной среде. По своей природе такое тормозное излучение одинаково с рентгеновским и его проникающая способность очень высокая. Именно по этой причине для защиты от излучения фосфора-32 применяются дополнительны средства защиты: защитные экраны со свинцовыми стеклами и свинцовые контейнеры для препаратов. Аналогичная защита требуется и для работы с йодом-125. Гамма-излучение 125I экранировать легкой защитой из оргстекла не удается.

Существуют три защитных фактора от воздействия ионизирующего излучения на организм.

41.                    Расстояние. Чем дальше вы от источника излучения, тем лучше. Это не только вывод народной мудрости — "держаться подальше", но и научно обоснованная реальность, т.к. интенсивность излучения убывает пропорционально квадрату расстояния. Поэтому старайтесь не брать радиоактивные препараты руками (даже в перчатках), а пользуйтесь пинцетами, захватами и прочими дистанционными приспособлениями, если такая возможность есть.

42.                    Время. Чем меньше время контакта с радиоактивным веществом, тем меньше вред воздействия. Поэтому готовьте заранее все реактивы, приборы, расчеты и продумывайте свои действия, чтобы сократить время непосредственного контакта с радиоактивным веществом до минимального.

43.                    Защитная среда (экранирование). Собственно защита с помощью различных контейнеров, стенок, экранов, защитной спецодежды, очков и т.д. Почему-то этому фактору уделяют самое большое внимание, хотя первый и второй гораздо важнее и проще.

Несколько сложнее ситуация с внутренним облучением. Понятно, что внутреннее облучение возможно только при попадании радионуклида вовнутрь вместе с пищей, водой или при вдохе. Так как такое попадание обычно не планируется, то и оценить количество радиоактивного материала и, соответственно, дозу внутреннего облучения очень сложно. Особенно это проблематично для слабых β-излучателей трития или углерода-14. Поэтому главным способом снижения внутреннего облучения персонала, работающего с радионуклидами, является аккуратность в работе с открытыми источниками и соблюдение санитарных и гигиенических норм и правил.

Вообще, вопреки разным слухам, количество радиоактивного материала, которое используется для life science, не может нанести серьезного ущерба для здоровья человека, работающего непосредственно с препаратом, и тем более для его будущих детей. Даже если в полном безумии кто-то проглотит 1÷2 полных фасовки [γ-32P] ATP (40 МБк), то ущерб будет выражаться, как материальные потери от нецелевого использования препарата, но не от физического вреда здоровью проглотившего. За многолетнюю работу многочисленных научных сотрудников в биологических НИИ в СССР, а затем в России, не зафиксировано ни одного случая отрицательного воздействия радиоактивных препаратов на здоровье работающего сотрудника. Слишком маленькие количества радиоактивных препаратов применяют для работы по III-му классу работ с радиоактивными веществами. Однако, это не относится к работам на предприятиях, производящих радионуклиды, и к другим организациям, где работают с радионуклидами по I или II классу работ.


Страницы: 1, 2, 3, 4, 5, 6, 7



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать