Расчет намагничивающего устройства для магнитопорошкового метода неразрушающего контроля

 (1.3)


Напряженность Н не зависит от магнитных свойств среды, но учитывает влияние силы тока и формы проводников на интенсивность магнитного поля в данной точке пространства. Магнитная индукция и напряженность связаны отношением


 (1.4)


Следовательно, в среде с неизменной магнитной проницаемостью индукция магнитного поля пропорциональна его напряженности.

Напряженность магнитного поля измеряется в амперах на метр (А/м) или амперах на сантиметр (А/см).

По изменению во времени выделяют постоянные, переменные, импульсные, вращающиеся, пульсирующие, бегущие и шумоподобные магнитные поля.

Постоянным магнитным полем является поле, индукция которого не изменяется во времени. В каждой точке пространства вектор магнитного поля остается постоянным по значению и направлению. Постоянное магнитное поле образуется либо постоянным магнитом, либо постоянным электрическим током, протекающим по какому-либо проводнику.

Переменноемагнитное поле образуется с помощью индукторов при питании их переменными, чаще всего синусоидальными, токами. В переменноемагнитном поле в каждой точке пространства изменяются как значение, так и направление вектора магнитной индукции в соответствии с законом изменения тока.

Пульсирующее магнитное поле – разновидность переменноемагнитного поля, у которого вектор магнитной индукции изменяется по уровню, но не изменяется по направлению. Такое поле образуется в индукторе при питании его пульсирующим током.

Вращающееся магнитное поле характеризуется тем, что вектор магнитной индукции перемещается в пространстве. Создается вращающееся магнитное поле с помощью трех или многофазных преобразователей. При этом индукторы должны располагаться либо по окружности, либо по образующей цилиндр.

Импульсное магнитное поле формируется с помощью индукторов при питании их импульсным током заданной формы.

Импульсное бегущее магнитное поле представляет собой поле, перемещающееся в пространстве относительно неподвижного объекта и импульсно изменяющееся во времени. Воспроизвести его можно двумя способами: механическим перемещением источника импульсного магнитного поля относительно объекта или последовательно переключением тока в группе неподвижных индукторов.

Шумоподобное магнитное поле – поле с хаотически изменяющимися основными параметрами.

1.2 Магнитные свойства различных веществ


Все вещества – твердые, жидкие и газообразные в зависимости от магнитных свойств делят на три группы: ферромагнитные, парамагнитные и диамагнитные.

К ферромагнитным материалам относят железо, кобальт, никель и их сплавы. Они обладают высокой магнитной проницаемостью μ, в тысячи и даже десятки тысяч раз большей магнитной проницаемости неферромагнитных веществ, и хорошо притягиваются к магнитам и электромагнитам.

К парамагнитным материалам относят алюминий, олово, хром, марганец, платину, вольфрам, растворы солей железа и др. Относительная магнитная проницаемость μ у них несколько больше единицы. Парамагнитные материалы притягиваются к магнитам и электромагнитам в тысячи раз слабее, чем ферромагнитные материалы.

Диамагнитные материалы к магнитам не притягиваются, а, наоборот, отталкиваются. К ним относят медь, серебро, золото, свинец, цинк, смолу, воду, большую часть газов, воздух и пр. Относительная магнитная проницаемость μ у них несколько меньше единицы.

Ферромагнитные материалы благодаря их способности намагничиваться широко применяют при изготовлении электрических машин, аппаратов в других электротехнических установок. Основными характеристиками их являются: кривая намагничивания, ширина петли гистерезиса и потери мощности при перемагничивании.

Процесс намагничивания ферромагнитного материала можно изобразить в виде кривой намагничивания в соответствии с рисунком 1.5-а, которая представляет собой зависимость индукции В от напряженности Н магнитного поля. Так как напряженность магнитного поля определяется силой тока, посредством которого намагничивается ферромагнитный материал, эту кривую можно рассматривать как зависимость индукции от намагничивающего тока I.

Кривую намагничивания можно разбить на три участка: Оа, на котором магнитная индукция возрастает почти пропорционально намагничивающему току (напряженности поля); а-б, на котором рост магнитной индукции замедляется («колено» кривой намагничивания), и участок магнитного насыщения за точкой б, где зависимость В от H становится опять прямолинейной, но характеризуется медленным нарастанием магнитной индукции при увеличении напряженности поля по сравнению с первым и вторым участками кривой.

Следовательно, при большом насыщении ферромагнитные вещества по способности пропускать магнитный поток приближаются к неферромагнитным материалам (магнитная проницаемость их резко уменьшается). Магнитная индукция, при которой происходит насыщение, зависит от рода ферромагнитного материала.



Рисунок 1.5 – Кривая намагничивания ферромагнитного материала (а) и петля гистерезиса (б)


Чем больше индукция насыщения ферромагнитного материала, тем меньший намагничивающий ток требуется для создания в нем заданной индукции и, следовательно, тем лучше он пропускает магнитный поток.

Магнитную индукцию в электрических машинах, аппаратах и приборах выбирают в зависимости от предъявляемых к ним требований. Если необходимо, чтобы случайные колебания намагничивающего тока мало влияли на магнитный поток данной машины или аппарата, то выбирают индукцию, соответствующую условиям насыщения (например, в генераторах постоянного тока с параллельным возбуждением). Если желательно, чтобы индукция и магнитный поток изменялись пропорционально намагничивающему току (например, в электроизмерительных приборах), то выбирают индукцию, соответствующую прямолинейному участку кривой намагничивания.

Большое практическое значение, особенно в электрических машинах и установках переменного тока, имеет процесс перемагничивания ферромагнитных материалов. На рисунке 1.5-б показан график изменения индукции при намагничивании и размагничивании ферромагнитного материала (при изменении намагничивающего тока I или напряженности магнитного поля Н).

Как видно из этого графика, при одних и тех же значениях напряженности магнитного поля магнитная индукция, полученная при размагничивании ферромагнитного тела (участок а-б-в), будет больше индукции, полученной при намагничивании (участки О-а и д-а). Когда напряженность поля (намагничивающий ток) будет доведена до нуля, индукция в ферромагнитном материале не уменьшится до нуля, а сохранит некоторое значение Вr соответствующее отрезку Об. Это значение называется остаточной индукцией.

Явление отставания, или запаздывания, изменений магнитной индукции от соответствующих изменений напряженности магнитного поля называется магнитным гистерезисом, а сохранение в ферромагнитном материале магнитного поля после прекращения протекания намагничивающего тока – остаточным магнетизмом.

При изменении направления намагничивающего тока можно полностью размагнитить ферромагнитное тело и довести магнитную индукцию в нем до нуля. Обратная напряженность Нс, при которой индукция в ферромагнитном материале уменьшается до нуля, называется коэрцитивной силой. Кривую О-а, получающуюся при условии, что ферромагнитное вещество было предварительно размагничено, называют первоначальной кривой намагничивания.

Следовательно, при перемагничивании ферромагнитного вещества, например при постепенном намагничивании и размагничивании стального сердечника электромагнита, кривая изменения индукции будет иметь вид петли; ее называют петлей гистерезиса.

При периодическом перемагничивании ферромагнитного вещества затрачивается определенная энергия, которая выделяется в виде тепла, вызывая нагревание ферромагнитного вещества. Потери энергии, связанные с процессом перемагничивания стали, называют потерями на гистерезис. Значение этих потерь при каждом цикле перемагничивания пропорционально площади петли гистерезиса. Потери мощности на гистерезис пропорциональны квадрату максимальной индукции Вmах и частоте перемагничивания f. Поэтому при значительном увеличении индукции в магнитопроводах электрических машин и аппаратов, работающих в переменном магнитном поле, эти потери резко возрастают.


Рисунок 1.6 – Распределение магнитных силовых линий в кольце из ферромагнитного материала


Если поместить в магнитное поле какое-либо тело из ферромагнитного материала, то магнитные силовые линии будут входить и выходить из него под прямым углом. В самом теле и около него будет иметь место сгущение силовых линий, т.е. индукция магнитного поля внутри тела и вблизи него возрастает.

Если выполнить ферромагнитное тело в виде кольца, то во внутреннюю его полость магнитные силовые линии практически проникать не будут в соответствии с рисунком 1.6, и кольцо будет служить магнитным экраном, защищающим внутреннюю полость от влияния магнитного поля. На этом свойстве ферромагнитных материалов основано действие различных экранов, защищающих электроизмерительные приборы, электрические кабели и другие электротехнические устройства от вредного воздействия внешних магнитных полей.


1.3 Источники магнитного поля

Магнитное поле – одна из форм электромагнитного поля. Его рассматривают как особый вид материи, посредством которого осуществляется связь и взаимодействие между движущимися электрическими зарядами.

Оно создается движущимися электрическими зарядами и спиновыми моментами атомных носителей магнетизма. Поэтому везде, где существует движущийся электрический заряд или электрический ток, возникает магнитное поле.

Обнаруживают магнитное поле по его действию на движущиеся электрические заряды или вещества с собственным магнитным полем. Важным свойством магнитного поля является неограниченность в пространстве: по мере удаления от движущихся электрических зарядов поле значительно ослабляется, но конечных границ не имеет.

Магнитные поля весьма разнообразны по своим свойствам. По происхождению различают естественные (геомагнитное поле, поле природных магнитов), искусственные (получаемые с помощью аппаратов или от предварительно намагниченных тел) и магнитные поля биологического происхождения (магнитные поля биообъектов).

Магниты состоят из миллионов молекул, объединенных в группы, которые называются доменами. Каждый домен ведет себя как минеральный магнит, имеющий северный и южный полюс. При одинаковой направленности доменов их сила объединяется, образуя более крупный магнит.

Железо имеет множество доменов, которые можно сориентировать в одном направлении, т.е. намагнитить. Домены в пластмассе, резине, дереве и остальных материалах находятся в беспорядочном состоянии, их магнитные поля разнонаправлены и потому эти материалы не могут намагничиваться.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать