Рисунок 3.8 - НКФ Каскадный трансформатор напряжения типа НКФ.
Каскадные трансформаторы напряжения изготовляют только однофазные и для наружной установки. На рис. 3.8 общий вид каскадного трансформатора типа НКФ на напряжение 110кВ.
4. Расчет электромагнитных переходных процессов в электрической сети
В процессе выполнения расчета необходимо на защищаемом объекте (трансформатор Т-3) рассчитать сверхпереходный и ударный ток при симметричном (трёхфазном) замыкании.
Исходными данным для расчета являются Схема электрической сети, параметры линий и трансформаторов, а так же мощности нагрузок.
Расчет выполняем в относительных единицах для приближенного вычисления в соответствии условия [8]
Удельное сопротивление для воздушных линий в приближённых расчётах напряжением 6-220 кВ Х0 = 0,4 Ом/км. ЭДС нагрузок в сверхпереходном режиме принимаем . Так как источник системы является источником бесконечной мощности, то ЭДС источника E* = U* = 1 = const.
Принимаем базисные условия:
Uб = 35 кВ;
Sб = 250 МВА;
Для упрощения преобразования схемы не будем учитывать нагрузку Е-2.
Рисунок 4.1 - Схема замещения заданной сети.
Сопротивления трансформатора Т-1:
;
X2 = 0;
.
Сопротивление линии Л-1:
,
Сопротивления трансформатора Т-3:
;
X8 = 0;
.
Сопротивление линии Л-2:
.
Сопротивление линии Л-3:
Сопротивление трансформатора Т-2:
.
Сопротивление нагрузки 1:
.
Сопротивление нагрузки 3:
.
ЭДС нагрузок в сверхпереходном режиме:
.
Преобразуем Δ в Y:
Рисунок 4.2 - Преобразование Δ в Y.
Х14 = Х2 + Х3 + Х4 = 0 + 0,151 + 0,28 = 0,431;
Х15 = Х7 + Х9 = 0,62 + 0,227 = 0,847;
Х16 = Х8 + Х10 = 0 + 0,227 = 0,227.
Сопротивления Y через сопротивления Δ:
;
;
.
Рисунок 4.3 - Схема после преобразования Δ в Y.
Упростим схему:
Рисунок 4.4 - Упрощение схемы.
Х20 = Х1 + Х17 = 0,09 + 0,243 = 0,333;
Х21 = Х19 + Х5 = 0,065 + 0,62 = 0,685;
Х22 = Х13 + Х12 + Х18 = 8,322 + 0,82 + 0,128 = 9,27.
Упростим схему, используя коэффициенты распределения (совместим сопротивление Х21 с сопротивлениями Х20 и Х22):
Рисунок 4.5 - Схема после совмещения сопротивления Х21 с сопротивлениями Х20 и Х22.
Эквивалентное сопротивление для Х20 и Х22:
.
Коэффициенты распределения:
;
.
Результирующее сопротивление для Х20, Х21 и Х22:
Хрез2022 = Хэ2022 + Х21 = 0,327 + 0,685 = 1,012.
Значения сопротивлений после преобразования:
;
.
Так как источник системы является источником бесконечной мощности, то ЭДС источника E* = U* = 1 = const.
Найдём эквивалентную ЭДС системы:
Эквивалентное сопротивление системы:
Ток трёхфазного короткого замыкания в относительных единицах:
.
Ток трёхфазного короткого замыкания в именованных единицах:
кА.
Ударный ток короткого замыкания:
кА.
5 Расчет релейной защиты
Требуется рассчитать релейную защиту автотрансформатора.
Автотрансформатор силовой трехфазный трехобмоточный типа АТДЦТН-125000/500/110-У1 предназначен для связи электрических сетей напряжением 500 и 110 кВ.
Расчет релейной защиты трансформатора выполним с использованием реле ДЗТ-21 [9]
Общие сведения о реле ДЗТ-21 (ДЗТ-23)
Для защиты трансформаторов и автотрансформаторов большой мощности ЧЭАЗ выпускает реле дифференциальной защиты с торможением типов ДЗТ-21 и ДЗТ-23, в которых применен новый принцип отстройки от бросков тока намагничивания и токов небаланса. Защита выполнена на микроинтегральном принципе.
На дифференциальных защитах с реле ДЗТ-21 и ДЗТ-23 может быть выполнена минимальная уставка по току срабатывания 0,3Iном трансформатора. Для отстройки от бросков намагничивающего тока силовых трансформаторов и переходных токов небаланса используется время-импульсный принцип блокирования защиты в сочетании с торможением от составляющих второй гармонической тока, содержащихся, как показывает анализ, в токах намагничивания.
Автотрансформатор имеет встроенное регулирование напряжения под нагрузкой (РПН) на стороне среднего напряжения в пределах 12 % номинального.
Сопротивления линейного регулировочного трансформатора и реактора (сопротивления которого рассчитаны при двух крайних положениях регулировочного автотрансформатора) заимствованы из примера расчета дифференциальной защиты цепей стороны низшего напряжения.
5.1 Порядок расчета
Расчет защиты производится в следующем порядке [9]:
5.1 Определяются первичные токи для всех сторон защищаемого трансформатора (автотрансформатора), соответствующие его номинальной мощности (проходной мощности для автотрансформатора). По этим токам определяются соответствующие вторичные токи в плечах защиты ,и , исходя из коэффициентов трансформации трансформаторов тока (выбираются с учетом параметров используемого оборудования, его перегрузочной способности, требований релейной защиты и схемы соединения трансформаторов тока; при соединении трансформаторов тока в треугольник— исходя из первичного тока ввиду целесообразности иметь вторичные токи в плече защиты, не превышающие номинальный ток трансформаторов тока 5 или 1 А) и коэффициента схемы . Результаты расчета сводим в таблицу 5.1
5.2 Выбираются ответвления трансреактора реле ТАV для основной стороны (за основную принимается сторона 220 кВ, на которой вторичный ток в плече защиты примерно равен номинальному току ответвления трансреактора реле)
Ответвления трансреактора реле ТАV или автотрансформаторов тока типов АТ-31(АТ-32), если последние используются на рассматриваемой стороне, принимаемой в расчете за основную (например, сторона низшего напряжения), выбираются, исходя из вторичного тока в плече защиты на этой .стороне, соответствующего номинальной мощности защищаемого трансформатора (автотрансформатора), так, чтобы
Ответвления автотрансформаторов тока типов АТ-31 и АТ-32 для неосновных сторон следует выбирать, исходя из вторичного тока Iном.неосн в плече защиты на рассматриваемой неосновной стороне, соответствующего номинальной мощности защищаемого трансформатора (автотрансформатора) и выбранного ответвления для основной стороны:
(5.2.1)
Принимаются ответвления с номинальным током, равным или ближайшим меньшим расчетного. Указанное необходимо для обеспечения возможности выставления на реле уставки относительного минимального тока срабатывания (при отсутствии торможения) , соответствующей наименьшему возможному значению первичного минимального тока срабатывания защиты ,
(5.2.2)
где и — коэффициент трансформации трансформаторов тока и коэффициент схемы для расчетной стороны.
Все величины должны приниматься для стороны, обусловливающей наибольшее загрубление защиты. Такой стороной является та неосновная сторона, для которой принятое ответвление больше отличается от расчетного , если с этой стороны может производиться включение трансформатора под напряжение.
При выборе ответвлений автотрансформаторов тока типов АТ-31 и АТ-32 и трансреактора реле ТАV в целях обеспечения наименьших значений могут использоваться табличные значения.
Таблица 5.1-Результаты расчета первичных токов и параметров защиты
Наименование величины |
Обозначение и метод определения |
Числовое значение для стороны |
||
220 кВ |
110 кВ |
35 кВ |
||
Первичный ток на сторонах защищаемого автотрансформатора, соответствующий его проходной мощности, А |
220 кВ |
110 кВ |
35 кВ |
|
Коэффициент трансформации трансформаторов тока |
||||
Схема соединения трансформаторов тока |
- |
750/5 |
1000/5 |
1500/5 |
Вторичный ток в плечах защиты, соответствующий проходной мощности защищаемого автотрансформатора, А |
Y |
|||
Номинальный ток принятого ответвления трансреактора реле на основной стороне, А |
||||
Расчетный ток ответвления автотрансформаторов тока на неосновных сторонах, А |
3,63 |
- |
- |
|
Тип автотрансформаторов тока, которые включаются в плечо защиты |
|
- |
||
Номинальный ток используемого ответвления автотрансформаторов тока, к которому подводятся вторичные токи в плече защиты, А |
- |
АТ-32 |
АТ-32 |
|
Номер используемого ответвления автотрансформаторов тока, к которому подводятся вторичные токи |
|
- |
2,5 |
3 |
Номер используемого ответвления автотрансформаторов тока, к которому подключается реле |
4 |
6 |
5 |
|
Номинальный ток используемого ответвления автотрансформаторов тока, к которому подключается реле |
3,62 |
|||
Номинальный ток принятого ответвления трансреактора реле на неосновных сторонах, А |
3,75 |
2,5 |
3,0 |
|
Номер используемого ответвления трансреактора реле |
2 |
4 |
3 |
|
Расчетный ток ответвления промежуточных трансформаторов тока цепи торможения реле, А |
- |
2,5 |
3 |
|
Номинальный ток принятого ответвления приставки и промежуточных трансформаторов тока, А |
4 |
6 |
5 |
|
Номер используемого ответвления приставки и промежуточных трансформаторов тока реле |
|
3,62 |