Dут=0,25D0.
, в том числе:
- протечки через уплотнения турбины, которые направляются в ПВД7 в количестве Dу. Рекомендуется Dу=(0,3…0,4)Dут. Принимаем Dу=0,4Dут=0,4×1,53=0,976 кг/с;
- протечки через уплотнения штоков клапанов. Рекомендуется Dпу=(0,6…0,7). В данной тепловой схеме они направляются в конденсатор К. Принимаем
DПУ=0,7×Dут=0,7×2,44=1, 71 кг/с.
3) Паровая нагрузка парогенератора:
,
4) Расход питательной воды на котел (с учетом продувки):
DПВ=Dпг+Dпр;
- количество котловой воды, идущей в непрерывную продувку:
Dпр=Рпр/100×Dпг, кг/с.
Рекомендуется процент непрерывной продувки парогенератора Рпр при восполнении потерь химически очищенной водой принимать Рпр=0,5…3%.
Dпр=3/100×104,64=3,14 кг/с,
Dпв=104,64+0,5187=105,16 кг/с.
5) Выход продувочной воды из расширителя (Р) непрерывной продувки
D¢пр = (1-β)×Dпр, кг/с,
где b - доля пара, выделяющегося из продувочной воды в расширителе непрерывной продувки:
.
ηР=0,97 – коэффициент, учитывающий потерю тепла в расширителе.
6) Выход пара из расширителя продувки:
D¢П=β×Dпр=0,423×3,14=1,33 кг/с.
7) Выход продувочной воды из расширителя:
D¢пр=(1-β)×DПР=(1-0,423)×3,14=1,81 кг/с.
8) Расход добавочной воды из цеха химической водоочистки (ВО):
;
где – коэффициент возврата конденсата.
3.2.1 Сетевая подогревательная установка
Параметры пара и воды в сетевой подогревательной установке приведены в таблице 3.2.1.
Таблица №3.2.1-Параметры пара и воды в сетевой подогревательной установке
Показатель |
Нижний подогреватель |
Верхний подогреватель |
ГРЕЮЩИЙ ПАР |
|
|
Давление в отборе Р, МПа |
0,0657 |
0,1397 |
Давление в подогревателе Р′, МПа |
0,0604 |
0,1286 |
Температура пара t,ºС |
89,4 |
110 |
Отдаваемое тепло qнс, qвс, кДж/кг |
2254,8 |
2255,4 |
КОНДЕНСАТ ГРЕЮЩЕГО ПАРА |
|
|
Температура насыщения tн,ºС |
88,5 |
109,2 |
Энтальпия при насыщении h′, кДж/кг |
362 |
449,57 |
СЕТЕВАЯ ВОДА |
|
|
Недогрев в подогревателе qнс, qвс,ºС |
5 |
5 |
Температура на входе tос, tнс, ºС |
45 |
71 |
Энтальпия на входе , кДж/кг |
189 |
340,8 |
Температура на выходе tнс ,tвс , ºС |
71 |
88 |
Энтальпия на выходе , кДж/кг |
340,8 |
369,6 |
Подогрев в подогревателе нс, вс, кДж/кг |
151,8 |
29 |
Определение параметров установки выполняется в следующей последовательности.
1)Расход сетевой воды для рассчитываемого режима:
.
2) Тепловой баланс нижнего сетевого подогревателя (ПСГ1):
.
Расход греющего пара на нижний сетевой подогреватель:
.
3) Тепловой баланс верхнего сетевого подогревателя (ПСГ2):
.
Расход греющего пара на верхний сетевой подогреватель:
.
3.2.2 Регенеративные подогреватели высокого давления
Таблица №3.2.2-Параметры пара и воды в охладителях дренажа
Теплообменник |
tД, 0С |
hВД, кДж/кг |
q °С |
u м3/кг |
q кДж/с |
||
ОД1 |
219,6 |
942,1 |
10 |
40,6 |
76,6 |
||
ОД2 |
194,8 |
829,3 |
10 |
43,6 |
79,6 |
|
|
Рисунок 3.2.2.1- К определению D1
Уравнение теплового баланса для ПВД-7:
.
Расход греющего пара на ПВД-7 составляет:
где - подогрев питательной воды в подогревателе и теплота отданная паром соответственно.
Рисунок 3.2.2.2- К определению D2
Уравнение теплового баланса ПВД-6:
.
Тепло, отводимое из дренажа ОД-2:
,
.
Расход греющего пара на ПВД6 составляет:
=.
Рисунок 3.2.2.3-К определению D3
Уравнение теплового баланса ПВД5:
.
Расход греющего пара на ПВД5 составляет:
.
3.2.3 Питательный насос
Определение подогрева воды в питательном насосе (внутренняя работа сжатия в насосе).
Давление перед ПН:
.
Давление после ПН: т.к. ПН повышает давление до величины , где Р0 – давление пара перед турбиной,
т. е. питательный насос повышает давление питательной воды на величину . Удельный объём воды в ПН определяется для давления он составляет . КПД питательного насоса . Подогрев воды в питательном насосе:
Рисунок 3.2.3- К определению hпвд
Энтальпия питательной воды после ПН:
;
где - энтальпия питательной воды после деаэратора питательной воды (ДПВ), из таблицы 3.1.
3.2.4 Двухступенчатый расширитель продувки
Первая ступень: расширение продувочной воды от до 6 ата.
= + ( - ;
где ,,- энтальпии в котле при , пара и кипящей воды при 6 ата.
= , = 0,005 ,
кг/с;
направляется в 6-ти атмосферный деаэратор.
Вторая ступень : расширение воды, кипящей при 6 ата в количестве ( - до давления 1,2 ата.
(- = + (-- ,
направляется в атмосферный деаэратор,
а -- направляется на вход в ПСГ1.
3.2.5 Деаэратор питательной воды (ДПВ)
Рисунок 3.2.5 -К определению DД
Расход пара из расширителя продувки в ДПВ:
Энтальпия пара из уплотнений штоков клапанов принимаем:
принимают при Р = 12,0 МПа и t = 550 0С;
Расход пара из деаэратора на эжекторную установку :.
Расход пара на эжектор и отсос из концевых уплотнений :
,
.
Количество пара, отводимое из деаэратора на концевые уплотнения:
Поток конденсата на входе в ДПВ из группы (ПВД):
Поток конденсата на входе в ДПВ:
,
Уравнение теплового баланса деаэратора:
,
После подстановки выражения Dкд и численных значений известных величин получаем расход греющего пара из отбора №3 турбины на деаэратор питательной воды:
Поток конденсата на входе в конденсатор: 91 кг/с.
3.2.6 Регенеративные подогреватели низкого давления
Рисунок 3.2.6.1- К определению D4
КПД подогревателей низкого давления .
Уравнение теплового баланса:
,
Расход греющего пара на ПНД-4:
,
ПНД-3
ПНД-3 рассматривается совместно со смесителем СМ1.
Рисунок 3.2.6.2-К определению D5
Уравнение теплового баланса:
Расход греющего пара на ПНД-3:
,
ПНД-2 и ПНД-1
Рисунок 3.2.6.3- К определению D6
ПНД2 рассматривается совместно с СМ2:
Рисунок 3.2.6.4- К определению D7
Уравнение теплового баланса ПНД-1:
,
.
Уравнение теплового баланса ПНД-2:
,
Решая совместно уравнения теплового баланса ПНД6 и ПНД7, получаем расходы греющего пара на ПНД6 и ПНД7 соответственно .
3.2.7 Подогреватель сырой воды
Рисунок 3.2.7 - К определению расхода пара на обогрев сырой воды в подогревателе
Уравнение теплового баланса подогревателя сырой воды (ПСВ):
,
где q6 – количество теплоты, переданной в подогревателе паром из отбора №5 турбины.
подогрев воды в ПСВ, принимаем =140, кДж/кг,
140-45=95 кДж/кг.
Расход сырой воды : ==2,088+2,44=4,528 кг/с.
Расход пара определим из теплового баланса подогревателя химически очищенной воды:
.
3.2.8 Деаэратор добавочной воды
Рисунок 3.2.8 -К определению
Уравнение теплового баланса деаэратора химически очищенной воды:
Решая данное уравнение получили:
=1,017 кг/с.