Расчет рабочего режима электрической сети

 Ом.

См.

 См.


1.3            Составление схемы замещения сети


Для составления схемы замещения сети используем схемы замещения ЛЭП и подстанции 2 (рис. 1.1 и рис. 1.2). Схема замещения сети показана на рис. 1.3. Для удобства дальнейших расчетов несколько упростим схему и переобозначим значения параметров. Окончательный вид схема замещения сети будет иметь, как показано на рис. 1.4. Значения параметров схемы замещения приведены в табл. 1.3.


Таблица 1.3 - Значения параметров схемы замещения

b1, См

b2, См

, Ом

, Ом

, Ом

, Ом

, Ом

, См

1,3191·10-4

-3,3067·10-4

3,7652

0,5065

5,3716

5,8412

5,301

2,6656·10-5


Рисунок 1.3 - Схема замещения сети


Рисунок 1.4 - Окончательный вид схемы замещения сети



2. Расчет рабочего режима сети


Схема замещения сети с обозначением распределения мощностей по участкам приведена на рис. 2.1. Расчет рабочего режима будет производиться итерационным методом.


2.1 Нулевая итерация


На нулевой приближенно определяется мощность центра питания сети - SA, в нашем случае это подстанция 1. Расчет ведется, двигаясь от конца сети к началу. Падением напряжения в сети на нулевой итерации пренебрегают и считают, что оно везде одинаково и равно напряжению центра питания - .

Определяется мощность в точке 2 со стороны СН:


 (2.1)


где  - нагрузка трансформатора на стороне среднего напряжения, МВА; UA – напряжение на шинах узловой подстанции, кВ; R3 – активное сопротивление обмотки среднего напряжения, Ом; Х3 – индуктивное сопротивление обмотки низкого напряжения, Ом.

Согласно (2.1):



Определяется мощность в точке 2 со стороны НН:

 (2.2)


Рисунок 2.1 - Схема замещения сети с обозначением распределения мощностей


где  - нагрузка трансформатора на стороне низкого напряжения, МВА; R4 – активное сопротивление обмотки низкого напряжения, Ом.

Согласно (2.2):



Определяется суммирующее значение мощности в точке2:


 (2.3)


где , - мощности в точке 2 со стороны СН и НН, соответственно, МВА.

Согласно (2.3):


Определяются коэффициенты распределения активной мощности обмотки ВН между обмотками СН и НН обозначим через  и  соответственно. Реактивной –  и . Они будут необходимы для расчета следующей итерации.


 


 

Определяется мощность в точке 1 со стороны ВН:


 (2.4)


где - суммирующее значение мощности в точке 2, МВА; R2 – активное сопротивление обмотки высокого напряжения, Ом; Х2 – индуктивное сопротивление обмотки высокого напряжения, Ом.

Согласно (2.4):



Определяется мощность в конце ЛЭП:

(2.5)


где - мощность в точке 1 со стороны обмотки ВН, МВА; - активная проводимость трансформатора, См.

Согласно (2.5):



Определяется мощность в начале ЛЭП:


(2.6)


где  - мощность в конце ЛЭП, МВА; R1 – активное сопротивление ЛЭП, Ом; Х2 – индуктивное сопротивление ЛЭП, Ом.

Согласно (2.6):



Определяется необходимая мощность центра питания:


(2.7)

где  - мощность вначале ЛЭП, МВА; b1 – реактивная проводимость ЛЭП, См.

Согласно (2.7):



Таким образом в завершении нулевой итерации получили ориентировочное значение мощности центра питания.


2.2 Первая итерация


В первой итерации расчет ведется от начала линии к концу. Исходными данными к ней являются напряжение центра питания, которое у нас задано, и мощность центра питания, которую мы получили в результате нулевой итерации. Расчет первой итерации учитывает падение напряжения в линии. Если в завершении данной итерации значения выходящих мощностей обмотки СН и обмотки НН будут отличаться от заданных не более, чем на 5%, то на этом расчет завершится.

Определяется мощность в начале ЛЭП:


 (2.8)


где - мощность центра питания, МВА.

Согласно (2.8):



Определяется мощность в конце ЛЭП:


Определяется напряжение в точке 1:


(2.9)


где ,  - активная и реактивная мощности в точке 1, соответственно.


Согласно (2.9):



Определяется мощность перед обмоткой ВН:


Определяется мощность после обмотки ВН:



Определяется приведённое напряжение в точке 2:


(2.10)


где ,  - активная и реактивная мощности в точке 2, соответственно.

Согласно (2.10):



Определяется мощность перед обмоткой СН:


(2.11)


где , - коэффициент распределения активной и реактивной мощностей между обмотками ВН и СН.

Согласно (2.11):


Определяется нагрузка на стороне СН:


Определяется приведённое напряжение на стороне СН:


(2.12)


где ,  - активная и реактивная мощности на стороне СН, соответственно.

Согласно (2.12):



Определяется мощность перед обмоткой НН:


(2.13)

где , - коэффициент распределения активной и реактивной мощностей между обмотками ВН и НН.

Согласно (2.13):



Определяется нагрузка на стороне НН:


Определяется приведённое напряжение на стороне НН:


(2.14)


где ,  - активная и реактивная мощности на стороне НН, соответственно.

Согласно (2.14):



В результате первой итерации получили значения выходящих мощностей с обмоток СН и НН. Сравним полученные результаты с заданными. Так как мы имеем дело с комплексными величинами, то погрешность должна не превышать 5%.

Определяется погрешность расчёта активной мощности на стороне СН:


(2.15)


где - заданная активная мощность на стороне СН, кВт;  - полученное значение активной мощности на стороне СН, кВт.

Согласно (2.15):



Определяется погрешность расчёта реактивной мощности на стороне СН:

(2.16)


где - заданная реактивная мощность на стороне СН, квар;  - полученное значение реактивной мощности на стороне СН, квар.

Согласно (2.16):



Определяется погрешность расчёта активной мощности на стороне НН:

(2.17)


где - заданная активная мощность на стороне НН, кВт;  - полученное значение активной мощности на стороне НН, кВт.

Согласно (2.17):



Определяется погрешность расчёта реактивной мощности на стороне НН:


(2.18)

где - заданная реактивная мощность на стороне НН, квар;  - полученное значение реактивной мощности на стороне НН, квар.


Согласно (2.18):


Как видно погрешность не превышает 5%, поэтому расчет завершается.

Проверим сможет ли подстанция обеспечить номинальное выходное напряжение. В результате первой итерации мы получили следующие значения напряжений:


 кВ – напряжение на обмотке ВН трансформатора;

 кВ – приведенное значение напряжения на обмотке СН трансформатора;

 кВ – приведенное значение напряжения на обмотке НН трансформатора.


Для обеспечения требуемых выходных напряжений (10,5 кВ на СН и 6,3 кВ на НН) приведенные значения напряжений  и  должны равняться 36,75 кВ. В трансформаторах данного типа предусмотрено регулирование напряжения на стороне ВН  от номинального. Определим на какой отпайке трансформатора будет достигнуто требуемое выходное напряжение.

Определяется напряжение одной отпайки:


(2.19)


где - требуемое приведенное значение напряжения, кВ; 1,5 – предел регулирования одной отпайки, %.

Согласно (2.19):



Определяется разница напряжения между требуемым и полученным напряжением:



Определяется необходимое число отпаек:


Определяется уточнённый коэффициент трансформации на стороне НН:



Определяется напряжение на стороне НН с учётом регулирования напряжения на стороне ВН:



Для обеспечения режима максимально близкого к номинальному рекомендуется работа трансформатора без регулирования напряжения на стороне высокого напряжения.


3. Расчет рабочего режима сети с учетом конденсаторной батареи


Схема замещения сети с обозначением распределения мощностей по участкам приведена на рис. 3.1. Расчет рабочего режима будет производиться итерационным методом.


3.1 Нулевая итерация


На нулевой приближенно определяется мощность центра питания сети - SA, в нашем случае это подстанция 1. Расчет ведется, двигаясь от конца сети к началу. Падением напряжения в сети на нулевой итерации пренебрегают и считают, что оно везде одинаково и равно напряжению центра питания - .Мощность конденсаторной батареи равна 1,4 МВАр. Конденсаторная батарея устанавливается на сторону низкой нагрузки.

Согласно (2.1):



Согласно (2.2):



Согласно (2.3):


Рисунок 3.1 - Схема замещения сети с обозначением распределения мощностей


Определяются коэффициенты распределения активной мощности обмотки ВН между обмотками СН и НН обозначим через  и  соответственно. Реактивной –  и . Они будут необходимы для расчета следующей итерации.


 

 


Согласно (2.4):



Согласно (2.5):


Согласно (2.6):



Согласно (2.7):



Таким образом в завершении нулевой итерации получили ориентировочное значение мощности центра питания с учетом конденсаторной батареи.


3.2 Первая итерация


В первой итерации расчет ведется от начала линии к концу. Исходными данными к ней являются напряжение центра питания, которое у нас задано, и мощность центра питания, которую мы получили в результате нулевой итерации. Расчет первой итерации учитывает падение напряжения в линии. Если в завершении данной итерации значение напряжения на низкой стороне будет отличаться от заданного не более, чем на 5%, то на этом расчет завершится.


Согласно (2.8):


Определяется мощность в конце ЛЭП:



Согласно (2.9):



Определяется мощность перед обмоткой ВН:



Определяется мощность после обмотки ВН:



Согласно (2.10):



Согласно (2.13):



Определяется нагрузка на стороне НН:



Согласно (2.14):



Определяется напряжение на стороне НН с учётом конденсаторной батареи:



Определяется погрешность расчёта напряжения на стороне НН:


(2.15)

где - заданное напряжение на стороне НН, кВ;  - полученное значение напряжения на стороне НН, кВ.


Согласно (2.15):



Так как погрешность не превышает 5% , то расчет на этом заканчивается.

ЗАКлючение


В данной работе был проведён расчёт параметров рабочего режима электрической сети итерационным методом (методом последовательных приближений). В первом приближении (нулевая итерация) априорным путём было получено первоначальное распределение мощностей по участкам сети. Во втором приближении (первая итерация) были уточнены мощности на каждом из участков и определены напряжения в узлах сети. В результате расчётные нагрузочные мощности на сторонах среднего и низшего напряжений совпали с заданными мощностями в пределах допустимой погрешности.

Напряжения, полученные в результате расчета на обмотках СН и НН были близки к номинальным, поэтому был рекомендован режим работы трансформатора без регулирования напряжения на стороне высокого напряжения.

Также в данной работе был произведен расчет параметров электрической сети с учетом конденсаторной батареи установленной на стороне низкого напряжения. В результате полученное напряжение на низкой стороне совпало с заданным в пределах допустимой погрешности.

Библиографический список


1. Шпиганович, А.Н. Методические указания к оформлению учебно–технической документации. [Текст] / А.Н. Шпиганович, В.И. Бойчевский, Липецк: ЛГТУ, 1997. – 32 с.

2. Шпиганович, А.Н. Методические указания и контрольные задания к расчётно–графическому заданию “Расчёт режимов электрических сетей”. [Текст]/ А.Н. Шпиганович, В.И. Бойчевский, Липецк: ЛГТУ, 1997. – 14 с.

3. Веникова, В.А. Расчёты и анализ режимов работы сетей: Учеб. пособие для вузов. [Текст]/ В.А. Веникова. М.: Энергия, 1974. – 336 с.


Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать