=
=
Коэффициенты теплоотдачи (для турбулентного режима течения воды)
Расчетный коэффициент теплопередачи (коэффициент теплопроводности стали l=39 ккал/м ч град) определяем по формуле для плоской стенки, так как ее толщина меньше 2,5 мм:
Температурный напор:
0C
Поверхность нагрева подогревателя:
= ,
Длина хода по трубкам при среднем диаметре трубок d= 0,5(dH+dB); d= 0,5∙(0,016+0,014) =0,015 м
=
Число секций (при длине одной секции lТ= 2 м)
Z=LT / lT =11,6 / 2 = 5,8секций; принимаем 6 секций.
Уточненная поверхность нагрева подогревателя согласно технической характеристике выбранного нами аппарата составит: F/ = 3,38 (табл. 1-24б)
F=F/ ∙Z=3,38*6 »20,28 м2.
Действительная длина хода воды в трубках и межтрубном пространстве LT=2*6=12м; LMT=3,5*6=21м (при подсчете LMT расстояние между патрубками входа и выхода сетевой воды, равное 3,5 м, выбрано из конструктивных соображений).
Определяем гидравлические потери в подогревателе. Коэффициенты гидравлического трения для трубок и межтрубного пространства определяем по формуле Альтшуля.
k – коэффициент абсолютной шероховатости. Для бесшовных стальных труб изготовления высшего качества k =0,06÷0,3 мм. Выбираем k=0,3*10-3 мм:
;
- эквивалентный диаметр для межтрубного пространства.
Коэффициенты местных сопротивлений для потока воды в трубках, принимаем по таб.1-4.
|
x * n(кол-во данных сопротивлений см. чертеж) |
Вход в трубки |
1,5 * 6=9.0 |
Выход из трубок |
1,5 * 6=9,0 |
Поворот в колене |
0,5 * 5=2.5 |
Итого: |
S =20,5 |
Суммарный коэффициент местных сопротивлений для потока воды в межтрубном пространстве определяется из выражения.
Отношение сечений входного и выходного патрубка
fмт/fпатр = 1.
=20,5*1*6=123.
Потери давления в подогревателе с учетом дополнительных потерь Хст от шероховатости (для загрязненных стальных труб по табл. 1-3 принимаем Хст =1,51):
=;3973 Па.
Потери в межтрубном пространстве подсчитываются по аналогичной формуле, но лишь в том случае, когда сумма значений коэффициентов местных сопротивлений Sxмт определена по указанной выше формуле, в противном случае расчет потерь Dpмт значительно усложняется.
Итак,
=
3. Расчетные данные пароводяного и секционного водоводяного теплообменников
Тип теплообменника |
Коэффициент теплопередачи K, , |
Температурный напор Dt, °С |
Поверхность нагрева F, м2 |
Диаметр корпуса D, м |
Длина корпуса L,м |
Гидравлическое сопротивление Dp, м вод. ст. Па |
Число ходов Z |
Пароводяной |
3304 |
59,5 |
2,03 |
0,254 |
3,2 |
0,122 (1197) |
2 |
Секционный водоводяной |
849 |
23,3 |
20,2 |
0,168 |
2,04 |
0,405 (3973) |
6 |
Вывод
Сравнение показывает, что для данных условий пароводяной теплообменник имеет те преимущества, что он более компактен и гидравлическое сопротивление его меньше.
4. Учебно-исследовательский раздел
1. Какой вид теплопередачи протекает в т.о. аппаратах.
Конвекция - явление переноса теплоты в слоях жидкостях или газах при их перемешивании. Различают свободную и вынужденную конвекцию.
В нашем случае, конвекция является вынужденной.
Вынужденная конвекция - перемешивание жидкости происходит с помощью каких-либо внешних устройств.
2.Есть или нет фазовый переход.
Фазовый переход - переход вещества из одной термодинамической фазы в другую при изменении внешних условий (температура, давление)
Так как предпочтительный т.о. аппарат у нас пароводяной, то фазовый переход есть.
3.Режим течения жидкости.
Различают ламинарный и турбулентный режимы течения жидкости. В нашем случае, это турбулентный режим т.к Re>2300.
4. Стенка внутри и снаружи: прямая, гладкая.
Уравнения для расчета:
- ур-е теплоотдачи.
- ур-е теплопроводности через плоскую стенку
- ур-е теплопередачи через плоскую стенку
- коэффициент теплопередачи.
;
Согласно исходным данным:
F= 2,58м2 - поверхностью нагрева;
∆t = 59,50С - температурный напор;
()
()
()
()
()
()
()
()
()
()
()
(мм) |
0,00 |
0,02 |
0,04 |
0,06 |
0,08 |
0,1 |
0,12 |
0,14 |
0,16 |
0,18 |
0,2 |
Q(М) |
5,84 |
4,39 |
3,9 |
2,4 |
1,7 |
0,75 |
0,12 |
0,1 |
0,09 |
0,08 |
0,072 |
Строим график зависимости :
5. Подбор критериальных уравнений для имеющих место случаев теплообмена т.о. аппаратах. Определение коэффициентов теплоотдачи и теплопередачи
Критерий Нуссельта (безразмерный коэффициент теплоотдачи), характеризует теплообмен между поверхностью стенки и жидкостью (газом).
;
d - диаметр;
α- коэф. конвективной теплоотдачи, Вт/(м2*K).
Критерий Прандтля (критерий физических свойств жидкости) –характеризует физические свойства жидкости и способность распространения теплоты в жидкости. Для газов Pr=0,6 – 1,0 и зависит только от атомности, жидкости Pr = 1-2500, для жидких металлов Pr=0,005-0,05.
;
v – коэффициент кинематической вязкости среды.
При вынужденной конвекции и турбулентном режиме течения жидкости.
Пароводяной т.о. аппарат:
1. внутри трубок:
2.
;
;
По справочнику "справочник по теплопередачи" (стр.268 табл.XXXIX. [2]) выбираем число при соответствующих температурах.
Prст =1,55 при tст=113˚C ;
;
3. снаружи трубок:
,
при tст = 113
;
Найдем α.
Водоводяной т.о. аппарат:
1. внутри трубок
;
По справочнику "справочник по теплопередачи" выбираем число при соответствующих температурах.
,
2. снаружи трубок
,
;
Найдем α.
;
Результаты расчетов:
Коэффициент теплоотдачи α, |
Курсовая работа, (отраслевой расчет) |
По критериальным уравнениям |
Пароводяной т.о. аппарат |
|
|
5495 |
7794 |
|
6250 |
4640 |
|
К |
3304 |
1560 |
Водоводяной т.о. аппарат |
|
|
2597 |
6488 |
|
2900 |
2527 |
|
К |
849 |
1692 |
Список литературы
1. Лебедев П.Д., Щукин А.А. Теплоиспользующие установки промышленных предприятий. (Курсовое проектирование). / Учеб. пособие для энергетических вузов и факультетов. – М.: Энергия, 1970 – 408 с.;
2. Кутателадзе С.С., Боришанский В.М. Справочник по теплопередаче. – М.: Госэнергоиздат, 1958 – 418 с.
Страницы: 1, 2