2.Расчет тепловой схемы котельной
2.1 Определение параметров воды и пара
При давлении Р1 = 1,32 МПа в состоянии насыщения имеем [1-32] = 192 ºС, = 2786,3 кДж/кг, = 816,5 кДж/кг, = 1969,8 кДж кг.
При давлении = 0,119 МПа в состоянии насыщения имеем [1-31] = 105 ºС, = 2684,1 кДж/кг, = 440,17 кДж/кг, = 2243,9 кДж/кг.
Энтальпия влажного пара на выходе из котлоагрегата:
кДж/кг.
Энтальпия влажного пара на выходе из расширителя:
кДж/кг.
Энтальпия воды при температуре ниже 100 ºС может быть с достаточной точностью определена без использования таблиц по формуле:
,
где = 4,19 кДж/кг град.
В дальнейшем определение энтальпии воды (конденсата) особо оговариваться не будет.
2.2 Общие замечания о расчете водоподогревательных установок.
Для водоподогревателя:
. (1)
Для пароводяных водоподогревателей:
, (2)
где W1 и W2 – расходы воды (греющей и подогреваемой), кг;
, и , начальные и конечные температуры воды, ºС;
– расход греющего пара, кг/с;
– энтальпия пара, кДж/кг;
– энтальпия конденсата, кДж/кг;
– коэффициент, учитывающий потери тепла аппаратом и трубопроводами в окружающею среду ().
Рис. 1. Схема водоподогревательной установки.
2.3 Расчет подогревателей сетевой воды.
Определим расход воды через сетевой подогреватель из уравнения теплового баланса:
(3)
кг/с.
Потери воды в тепловой сети заданы в процентах от :
кг/с.
Подпиточный насос подает в тепловую сеть воду из деаэратора с энтальпией = 440,17 кДж/кг в количестве . Поэтому расход тепла на подогрев сетевой воды в бойлерах уменьшится на величину:
,
где соответствует температуре = 41ºC, = 171,63 кДж/кг;
кДж/кг.
Расход пара на подогрев сетевой воды определяется из уравнения:
.
Откуда:
кг/с.
2.4 Определение расхода пара на подогрев сетевой воды и на технологические нужды
Расход тепла на технологические нужды составит:
, (4)
где iко – средневзвешенная энтальпия конденсата от технологических потребителей:
. (5)
В случае отсутствия возврата конденсата от технологических потребителей iко = iсв.
кДж/с.
Суммарный расход на подогрев сетевой воды и на технологические нужды составит:
Расход пара и воды на технологические нужды составит:
кг/с.
2.5 Ориентировочное определение общего расхода свежего пара
Суммарный расход острого пара на подогрев сырой воды перед химводоочисткой и деаэрацию составит 3 – 11% от Dо.
Примем:
кг/с.
Общий расход свежего пара:
кг/с.
2.6 Расчет редукционно-охладительной установки (РОУ)
Назначение РОУ – снижение параметров пара за счет дросселирования и охлаждения его водой, вводимой в охладитель в распыленном состоянии. РОУ состоит из редукционного клапана для снижения давления пара, устройства для понижения температуры пара путем впрыска воды через сопла, расположенные на участке паропровода за редукционным клапаном и системы автоматического регулирования температуры и давления дросселирования пара.
В охладителе РОУ основная часть воды испаряется, а другая с температурой кипения отводится в конденсатные баки или непосредственно в деаэратор.
Примем в расчетно-графическом задании, что вся вода, вводимая в РОУ, полностью испаряется, и пар на выходе является сухим, насыщенным.
Подача охлажденной воды в РОУ производственных котельных обычно осуществляется из магистрали питательной воды после деаэратора.
Тепловой расчет РОУ ведется по балансу тепла (рис. 2).
Рис. 2. Схема РОУ.
Расход редукционного пара с параметрами , , и расхода увлажняющей воды определяем из уравнения теплового баланса РОУ:
. (6)
Из уравнения материального баланса РОУ:
. (7)
Решая совместно уравнения (6) и (7), получим:
, (8)
где – расход острого пара, кг/с, с параметрами , ;
– энтальпия влажного пара, кДж/кг;
– энтальпия увлажняющей воды, поступающей в РОУ, кДж/кг.
Определим расход свежего пара, поступающего в РОУ:
Определим расход возврата конденсата от потребителя m:
кг/с.
Составляем схему РОУ:
Рис. 3. Узел РОУ.
Определяем расход увлажняющей воды:
кг/с,
кг/с.
2.7 Расчет сепаратора непрерывной продувки
Непрерывная продувка барабанных котлоагрегатов осуществляется для уменьшения солесодержания котловой воды и получения пара надлежащей чистоты. Величина продувки (в процентах от производительности котлоагрегатов) зависит от солесодержания питательной воды, типа котлоагрегатов и т.п.
Для уменьшения потерь тепла и конденсата с продувочной водой применяются сепараторы – расширители (рис. 4). Давление в расширителе непрерывной продувки принимается равным . пар из расширителя непрерывной продувки обычно направляют в деаэраторы.
Тепло продувочной воды (от сепаратора непрерывной продувки) экономически целесообразно использовать при количестве продувочной воды больше 0,27 кг/с. Эту воду обычно пропускают через теплообменник подогрева сырой воды. Вода из сепаратора подается в охладитель или барботер, где охлаждается до 40 – 50 ºС, а затем сбрасывается в канализацию.
Рис. 4. Схема непрерывной продувки.
Расход продувочной воды из котлоагрегата определяется по заданному его значению в процентах от .
кг/с.
Количество пара, выделяющегося из продувочной воды, определяется из уравнения теплового баланса:
,
и массового баланса сепаратора:
.
Рис. 5. Узел сепаратора непрерывной продувки.
Имеем:
(10)
кг/с.
Расход воды из расширителя:
кг/с.
2.8 Расчёт расхода химически очищенной воды
Общее количество воды, добавляемой из химводоочистки, равно сумме потерь воды и пара в котельной, на производстве и тепловой сети.
1) Потери конденсата от технологических потребителей:
. кг/с.
2) Потери продувочной воды = 0,236 кг/с.
3) Потери пара внутри котельной заданы в процентах от :
кг/с.
4) Потери воды в теплосети = 2,847 кг/с.
5) Потери пара с выпаром из деаэратора могут быть определены только при расчете деаэратора. Предварительно примем = 0,05 кг/с.
Общее количество химически очищенной воды равно:
(11)
кг/с.
Для определения расхода сырой воды на химводоочистку, необходимо учесть количество воды, идущей на взрыхление катионита, его регенерацию, отмывку и прочие нужды водоподготовки. Их обычно учитывают величиной коэффициента К = 1,10 – 1,25. В данной расчетно-графическом задании следует принимать К = 1,20.
Имеем:
кг/с.
2.9 Расчет пароводяного подогревателя сырой воды №2
Запишем уравнение теплового баланса подогревателя:
, (12)
отсюда энтальпия пара на выходе из подогревателя:
кДж/кг,
где = 376,94 при tр = 90 ºС.
Температура сырой воды на выходе из подогревателя = 5,9 ºС.
Рис. 7. Схема пароводяного подогревателя сырой воды №2.
2.10 Расчет пароводяного подогревателя сырой воды №1.
Рис. 7. Схема пароводяного подогревателя сырой воды.
Запишем уравнение теплового баланса подогревателя:
. (13)
Расход редуцированного пара в подогреватель сырой воды:
кг/с
2.11 Общие замечания о расчете деаэратора
Для удаления растворенных в воде газов применяются смешивающие термические деаэраторы. В общем случае они могут быть атмосферного типа с давлением в колонке 0,11 – 0,13 МПа, повышенного давления и вакуумные с давлением ниже атмосферного. В курсовом проекте применен смешивающий термический деаэратор атмосферного типа ( = 0,17 МПа). Под термической деаэрацией воды понимают удаление растворенных в ней воздуха при нагреве до температуры кипения, соответствующей давлению деаэраторной колонке. Целью деаэрации является удаление входящих в состав воздуха агрессивных газов, вызывающих коррозию металла оборудования (кислорода и угольной кислоты). Подогрев воды, поступающей в деаэратор, до температуры насыщения осуществляется редуцированным паром ().
Газы, выделяемые деаэрированной воды, переходят в паровой поток и остатком неконденсированного избыточного пара (выпара) удаляются из деаэрированной колонки через штуцер, а затем сбрасываются в барботер (иногда через охладитель выпара). Расход избыточного пара () по имеющимся опытным данным ЦКТИ составляет 2 – 4 кг на 1 тонну деаэрированной воды. В курсовом проекте следует принять: , где - суммарный расход деаэрируемой воды.
Энтальпия пара (выпара) принимается равной энтальпии сухого насыщенного пара при данном давлении (). Деаэрированная вода () из бака деаэратора подается питательным насосом (ПН) в котельный агрегат.
При расчете деаэратора неизвестными являются расход пара на деаэратор () и расход деаэрированной воды (). Эти величины определяются при совместном решении уравнений массового и теплового балансов деаэратора.
Произведем уточнение ране принятого расхода . Суммарный расход деаэрируемой воды (из-за отсутствия возврата конденсата примем
:
кг/с,
кг/с.
2.12 Расчет деаэратора
Неизвестным в расчете являются расход деаэрированной воды и расход пара на деаэрацию. Запишем уравнение теплового и массового балансов (предположим для деаэратора ηп = 1):
, (15)
. (16)
Из уравнения (16) находим:
Подставляем полученное значение в уравнение (15) и решаем его относительно :
кг/с;
кг/с.
Рис. 10. Расчётная схема деаэратора.
2.13 Проверка точности расчета первого приближения
Из уравнения массового баланса линии редуцированного пара определяем значение :
кг/с.
При расчете деаэратора получено = 0,348 кг/с. Ошибка расчета составляет 32%. Допустимое расхождение 3%. Следовательно, необходимо провести второй цикл приближения.
2.14 Уточненный расчет РОУ
Расчет редуцированного пара:
кг/с.
Из уравнения (6) и (7) имеем: ;
.
Отсюда:
кг/с.
кг/с.
Общий расход свежего пара:
кг/с.
2.15 Уточненный расход тепловой схемы
1) Расчет расширителя непрерывной продувки:
кг/с;
кг/с;
кг/с.
2) Расчет расхода химически очищенной воды:
кг/с;
кг/с;
кг/с.
3) Расчет пароводяного подогревателя сырой воды №2:
кДж/кг.
4) Расчет пароводяного подогревателя сырой воды №1:
кг/с.
5) Расчет конденсатного бака отсутствует.
6) Расчет деаэратора:
кг/с;
кг/с.
2.16 Проверка математического баланса линии редуцированного пара
Аналогично 2.16 имеем:
кг/с.
Из расчета деаэратора = 0,789 кг/с. Расхождение составляет 0,019%, дальнейших уточнений не требуется.
2.17 Определение полной нагрузки на котельную
Полная нагрузка определяется по формуле:
кг/с.
В тоже время:
3 Составление теплового баланса котельной
Тепловой баланс котельной составляется для определенных КПД, оценки относительной величины различных потерь, что позволяет оценить экономичность предложенной тепловой схемы.
Суммарное поступление теплоты в схему:
кВт
Здесь:
кг/с.
Расход теплоты с паром на технологические нужды с учетом возврата конденсата:
кВт.
Процент расхода теплоты на технологические нужды:
%.
Расход теплоты в теплосеть с учетом потерь воды в теплосети:
кВт
Аналогично:
%.
Полезно расходуемый процент теплоты (КПД схемы):
%.
Суммарные потери теплоты:
%.
Основные составляющие потерь теплоты:
1) Потери от утечек свежего пара:
кВт;
%.
2) Потери в окружающую среду в бойлере:
кВт;
%.
Неучтенные потери составляют:
% %.
При выполнении курсового проекта неучтенные потери не должны превышать 1%. Для выполнения этого условия при расчете различных тепловых схем котельных может возникнуть необходимость учесть не только указанные ранее потери.
Продолжим вычисление потерь:
3) Потери с водой при производстве химводоочистки:
кВт;
%.
4) Потери теплоты со сбрасыванием в барботер продувочной водой (после водоводяного подогревателя):
кВт;
%.
5) Потери в окружающую среду в подогревателе сырой воды:
кВт;
%.
6) Потери с выпаром:
кВт;
%.
7) Потери в окружающую среду в водоводяном подогревателе:
кВт;
%.
Итого имеем:
%.
Незначительное расхождение вызвано погрешностью расчетов. При выполнении курсового проекта допустимо расхождение, не превышающее 1%, следовательно, малые потери учитывать нецелесообразно.
4 Определение количества котлоагрегатов, устанавливаемых в котельной
Подбирая количество устанавливаемых котлоагрегатов, условно принимаем, что максимальная нагрузка котельной соответствует суммарной производительности, и руководствуемся следующими соображениями:
1) недопустимо устанавливать один котлоагрегат, а общее их количество не должно превышать четырех – пяти;
2) устанавливаемые котлоагрегаты должны иметь одинаковую производительность.
Может оказаться, что один из котлоагрегатов будет недогружен, в этом случае он является резервным.
шт.
Принимаем котлоагрегат ДКВР 10-13
Список используемой литературы
1) Расчет тепловой схемы котельной: Методические указания, Сост.: Ю.В.Новокрещенов, ФГОУ ВПО ИжГСХА.
2) Справочник по котельным установкам малой производительности. К.Ф. Роддатис, А.Н. Полтарецкий.
Страницы: 1, 2