Расчет токов короткого замыкания

t=0,02с I’tдв=0,77

t=0,05с I’tдв=0,69

t=0,1с I’tдв=0,65

t=0,02с I’tм5=0,77∙3217=2477,33 А

t=0,05с I’tм5=0,69∙3217=2219,73 А

t=0,1с I’tм5=0,65∙3217=2091,05 А


Апериодическая составляющая тока КЗ.


Iа=1,41∙I’м10∙е-t/ Ta,


где Та=0,055 с – определяем по кривым;t=0,02с Iам5=1,41∙3217∙е-0,02/ 0,055=3171,65 А


t=0,05с Iам5=1,41∙3217∙е-0,05/ 0,055=1855,025 А

t=0,1с Iам5=1,41∙3217∙е-0,1/ 0,055=751,29 А

Ударный ток КЗ М10: Iум5=1,41∙I’м5∙Ку=1,41∙3217∙1,82=8253,7 А, где Ку=1,82 – ударный коэффициент, определяемый по кривым.  

Токи от М3 - АД:


I’м3=Iпускм3∙Iномм3=5,5∙522=2871 А

Itдв=I’м3∙е-t/ Ta ,


где Та=0,04 с – определяем по таблице;


t=0,02с Itм3=2871∙е-0,02/ 0,04=1750,6 А

t=0,05с Itм3=2871∙е-0,05/ 0,04=829,523 А

t=0,1с Itм3=2871∙е-0,1/ 0,04=239,67 А

Iам3=1,41∙I’м3∙е-t/ Ta ,


где Та=0,04 с – определяем по таблице;


t=0,02с Iам3=1,41∙2871∙е-0,02/ 0,04=2467,52 А

t=0,05с Iам3=1,41∙2871∙е-0,05/ 0,04=1169,627 А

t=0,1с Iам3=1,41∙2871∙е-0,1/ 0,04=337,93 А


Ударный ток КЗ М3:


Iум3=1,41∙I’м3∙Ку=1,41∙2871∙1,56=6315,05 А,


где Ку=1,56 – ударный коэффициент, определяемый по таблице.

Токи от М4 - СД:


I’м4=1,2∙Iпускм4∙Iномм4=1,2∙6,65∙270=2154,6

Ток КЗ в произвольный момент времени: Itдв=I’tдв∙I’м4, где I’tдв – находим по кривым:


Для t=0,02с I’tдв=0,77

t=0,05с I’tдв=0,69

t=0,1с I’tдв=0,65

t=0,02с I’tм4=0,77∙2154,6 =1658,58 А

t=0,05с I’tм4=0,69∙2154,6 =1486,26 А

t=0,1с I’tм4=0,65∙2154,6 =1400,1 А


Апериодическая составляющая тока КЗ. Iа=1,41∙I’м4∙е-t/ Ta, где Та=0,055 с – определяем по кривым;


t=0,02с Iам4=1,41∙2154,6 ∙е-0,02/ 0,055=2123,956 А

t=0,05с Iам4=1,41∙2154,6 ∙е-0,05/ 0,055=1242,72 А

t=0,1с Iам4=1,41∙2154,6 ∙е-0,1/ 0,055=940,66 А


Ударный ток КЗ М4:


Iум4=1,41∙I’м4∙Ку=1,41∙2154,6 ∙1,82=5527,34 А,


где Ку=1,82 – ударный коэффициент, определяемый по кривым.

Расчет токов КЗ от генераторов и системы.

Составим схему замещения с учетом сети и генераторов и места короткого замыкания.


Х54=Х17+Х10+(Х16+Х19)∙Х12/(Х9+Х16+Х12)=3,56+0,3+(11,915+0,043)∙4,4/(11,915+0,043++4,4)=7,28

Преобразуем треугольник, состоящий из сопротивлений Х3, Х4, Х54 в звезду и еще раз упростим схему. В результате чего получаем следующую схему.


Х55=Х3∙Х54/(Х3+Х4+Х54)= 0,368∙7,28/(0,368+0,368+7,28) =0,334;

Х56=Х23+Х3∙Х4/(Х3+Х4+Х54)= 0,516+0,368∙0,368/(0,368+0,368+7,28)

=0,532;

Х57=Х54∙Х4/(Х3+Х4+Х54)= 7,28∙0,368/(0,368+0,368+7,28) =0,334;


Система и генераторы g2 находятся за общим сопротивлением Х55, поэтому преобразуем схему с помощью коэффициента токораспределения:


Хэкв.=Х55+Х56∙Х57/(Х56+Х57)=

0,334+0,532∙0,334/(0,532+0,334)=0,539;

Хс=Х13∙Хэкв/(Х13+Хэкв)= 0,278∙0,539/(0,278+0,539)=0,183;


Определяем коэффициенты С1, С2 :


С1=Хэкв./Х56=0,539/0,532=1,013

С2=Хэкв./Х57=0,539/0,334=1,613


В результате получим схему замещения.


Х58=Хс/С1=0,183/1,013=0,182

Х59=Хс/С2=0,183/1,613=0,114.

 

Найдем токи от G1 и G2.

Расчет ведем по расчетным кривым:


Храсч.g1=Х13∙Sнг/Sб=0,278∙20/100=0,056

Храсч.g2=Х59∙Sнг/Sб=0,114∙20/100=0,028


Сверхпереходный ток генераторов G1 и G2 в о. е.:


I’g1= E’g1/Храсч.g1=1,08/0,056=19,28    

I’g2= E’g2/Храсч.g2=1,08/0,028=38,57


Сверхпереходный ток генератора G1 :


Ig1= I’g1∙I’gном= I’g1∙Sнg/(1,73∙Uнg)= 19,28∙20000/(1,73∙6,3)=35379А


По расчетным кривым:


Для t=0,02с I’tg=0,99

t=0,05с I’tg=0,98

t=0,1с I’tg=0,97

Iпg= I’tg∙Ig1

t=0,02с Iпg1=0,99∙35379=35025,59 А

t=0,05с Iпg1=0,98∙35379=34671,42 А

t=0,1с Iпg1=0,97∙35379=34317,36 А

Ударный ток КЗ:

Iуг1=1,41∙Ig1∙Ку=1,41∙35379∙1,8=87098,14 А    


Сверхпереходный ток генератора G2 :


Ig2= I’g2∙I’gном= I’g2∙Sнg/(1,73∙Uнg)= 38,57∙20000/(1,73∙6,3)=70777А


По расчетным кривым:


Для t=0,02с I’tg=0,99

t=0,05с I’tg=0,98

t=0,1с I’tg=0,97

Iпg= I’tg∙Ig1

t=0,02с Iпg1=0,99∙70777=70069,65 А

t=0,05с Iпg1=0,98∙70777=69361,12 А

t=0,1с Iпg1=0,97∙70777=68653,19 А


Ударный ток КЗ:


Iуг2=1,41∙Ig2∙Ку=1,41∙70777∙1,8=179632 А       


Найдем токи от системы.

Расчет ведем по расчетным кривым:


Храсч.с=Х58∙Sнс/Sб=0,182∙67,3/100=0,122


Сверхпереходный ток КЗ от системы в о. е.:


I’с= E’с/Храсч.g1=1,08/0,122=8,85


Сверхпереходный ток от системы:


Iс= I’с∙I’сном= I’с∙Sнс/(1,73∙Uнс)= 8,85∙67300/(1,73∙110)=3129,82 А


По расчетным кривым:


Для t=0,02с I’tс=0,99

t=0,05с I’tс=0,97

t=0,1с I’tс=0,95

Iпс= I’tс∙Iс

t=0,02с Iпс=0,99∙3129,82 =3098,52 А

t=0,05с Iпс=0,97∙3129,82 =3035,95 А

t=0,1с Iпс=0,95∙3129,82 =2972,55 А


Ударный ток КЗ:


Iус=1,41∙Iс∙Ку=1,41∙3129,82 ∙1,8=7941,4 А


1.4 Расчет параметров режима несимметричного однофазного КЗ


Составляется схема замещения прямой последовательности и обратной. Данные схемы замещения значительно упрощаются, так как подпитывающий эффект нагрузки при однофазном КЗ намного меньше, следовательно в данной схеме замещения учитываются только двигатели достаточно большой мощности непосредственно подключенные к точке КЗ (М1, М2, М5, М9, М10). ЭДС генераторов всех ветвей принимаем равной нулю.

При определении напряжения Uк1а0, в случае двухфазного КЗ, необходимо учесть, что в системах с заземленной нейтралью (Х0рез. имеет конечное значение) Uк1а0 при Iк1а0=0 равно нулю, а в системах с изолированной нейтралью (Х0рез.=∞) Uк1а0=-∞; следовательно, составляется схема замещения только для прямой и обратной последовательностей.

Преобразуем треугольник, состоящий из сопротивлений Х7, Х10, Х12 в звезду и еще раз упростим схему. В результате чего получаем следующую схему.


Х60=(Х19+Х16) ∙Х12/(Х16+Х19+Х12)+Х4=(0,043+11,915) ∙4,4/(11,915+0,043+4,4)=3,21

Х61=Х11∙Х20/(Х11+Х20)=11,813∙9,78/(11,813+9,78)=5,502 Ер10=Х61∙(Ем9/Х11+Ем10/Х20)=5,502∙(1,1/11,813+1,1/9,78)=1,114;

Далее в расчете применим способ токораспределения. Приняв ток в месте короткого замыкания за единицу и считая все приведенные ЕДС одинаковыми, нужно произвести распределение этого тока в заданной схеме. Считаем, что только в точке 1 приложено ЭДС. Через остальные конечные точки осуществляем замкнутый контур.

Преобразуем звезды, состоящие из сопротивлений Х23, Х3, Х60 и Х30, Х31, Х32 в треугольники и упростим схему. В результате чего получаем следующую схему.


Х62=(Х30+Х31+Х32)/Х32=(3,27+0,744+0,01)/ 0,01=401,4;

Х63=(Х30+Х31+Х32)/Х31=(3,27+0,744+0,01)/ 0,744=5,39;

Х64=(Х30+Х31+Х32)/Х30=(3,27+0,744+0,01)/ 3,27=1,227;

Х65=(Х3+Х23+Х60)/Х23=(0,368+0,516+3,21)/ 0,516=7,66;

Х66=(Х3+Х23+Х60)/Х60=(0,368+0,516+3,21)/ 3,21=1,28;

Х67=(Х3+Х23+Х60)/Х3=(0,368+0,516+3,21)/ 0,368=11,14;


Упростим схему. В результате чего получаем следующую схему.


Х68=Х62∙Х66/(Х62+Х66)= 401,4∙1,28/(401,4+1,28)=1,272;

Х69=Х63∙Х65/(Х63+Х65)= 5,39∙7,66/(5,39+7,66)=3,175;

Х70=Х64∙Х67∙Х61/(Х64∙Х67+Х64∙Х61+Х67∙Х61)=

1,227∙11,14∙5,502/(1,227∙11,14+1,227∙5,502+

+11,14∙5,502)=0,922;


В результате всех преобразований.


Хэкв=Х6+(Х69+Х70)∙Х68/(Х69+Х70+Х68)=21,03+(3,175+0,922)∙1,272/(3,175+0,922+1,272)=22,2;

Так как, приняв ток в месте короткого замыкания за единицу, получим, что Е=22,2, тогда


U5-1=I1∙X6-Е=1∙21,03-22,2= -1,18

I3= -U5-1/X68=1,18/1,272=0,931

I2= -U5-1/(X69+Х70)= 1,18/(3,175+0,922)= 0,287

U5-4=U5-1+I2∙X69= -1,18+0,287∙3,175= -0,268

U4-1= -I2∙X69= -0,287∙3,175= -0,911

I4= -U5-1/X62= 1,18/401,4= 0,003

I5= -U4-1/X63= 0,911/5,39= 0,169

I6=-U5-4/X64=0,268/1,227=0,218

I7=I5-I6=0,169-0,218= -0,049

I8= -U5-4/X61=0,218/5,502=0,039

I9= -U4-1/X65= 0,911/7,66= 0,118

I10=I7-I8=-0,049-0,039= -0,088

I11= -U5-4/X67=0,268/11,14=0,0024

I12= -U5-1/X66= 1,18/1,28= 0,88

I13=I5+I4=0,169+0,004=0,003

I14=I4+I6=0,004+0,218= 0,221

I15=I9+I12=0,118+0,88=0,998

I16=I10+I15=-0,088+0,998=0,91


Тогда


Х71=Е/I1=22,2/1=22,2

Х72=Е/I14=22,2/0,221=100,45,

Х73=Е/I8=22,2/0,039=569,23,

Х74=Е/I16=22,2/0,91=24,39,

Граничные условия


Iк2а0=0

Iк2в0=-Iк2с0

Uк2в=-Uк2с


Граничные условия через симметричные составляющие:


Iка=Iка1+Iка2+Iка0=0

Iкв+Iкс=(а+а)∙Iка1+(а+а)∙Iка2+2∙Iка0=0

Uкв-Uкс=(а-а)∙Uка1+(а-а)∙Uка2=0


Хэкв.= Х72∙Х73∙Х74/(Х72∙Х73+Х72∙Х74+Х73∙Х74)=

100,45∙569,23∙24,39/(100,45∙569,23+

+100,45∙24,39+569,23∙24,39)=19,04;

Ер11=Хэкв∙(Ер2/Х72+Ер10/Х73+Ес/Х74)=

19,04∙(1,28/100,45+1,114/569,23+1,08/24,39)=0,919;


После преобразования получаем упрощенную схему замещения:


Хрез.=Хэкв.∙Х11/(Хэкв.+Х71)= 0,919∙11,813/(0,919+22,2)=0,

Ер=Хрез.∙(Ер11/Хэкв.+Ем5/Х71)= 0,47∙(0,919/0,47+0,9/22,2)=0,921.


В результате всех преобразований получена окончательная схема.


Х=Хрез.∙Uб/Sб=0,47∙6,3²/100=0,186 Ом

Хрез.1=Хрез.2=0,186 Ом


Определяем токи и напряжения отдельных последовательностей фазы А:

Iк2а1=Iб∙Ер/(Хрез.1+Хрез.2)=9,165∙0,736/(0,186 +0,186)=18,13 кА;

Iк2а2=-Iк2а1=-18,13 кА;

Iк2а0=0 кА;

Uк2а1= Хрез.1∙Iк2а1=0,186 ∙18,13 =3,37 кВ;

Uк2а2=Uк2а1=3,37 кВ;

Uк2а0=0


С учетом значений последовательностей определяем токи и напряжения фаз:


Iк2а=0 кА;

Iк2в=-1,73∙Iк2а1=-j31,36 кА;

Iк2с=-Iк2в= j31,36 кА;

Uк2а=2∙Хрез.2∙Iк2а1=2∙0,186 ∙18,13 =6,744 кВ;

Uк2в=-Uк2а1=-6,744 кВ;

Uк2с=-Uк2а1=-6,744 кВ.

2. Электромеханические переходные процессы

2.1 Расчет статической устойчивости

Расчет результирующего сопротивления: Хрез.= 0,186.

Расчет активной мощности потребителей:


Р0=Рн1+Рм1+Рм2+Рм5+Рм9+Рн3+Рм3+Рм4+Рн2+Рм10+Рн4=3000/0,9+

2000+2000+2500+

1600+2000/0,9+4500+2000+1000/0,9+1600+2000/0,9=25,1 МВт

Р0=Р0/Рб=Р0/(Sб∙cosφ)= 25,1 /(100∙0,9)=0,278


Расчет активной мощности передаваемой генератором системы:


Р=Еq∙Uc∙sinφ/Xрез, где Еq=1,08

Pi=Eq∙Uc∙sinб/ Хрез=1,08∙1∙sinб/0,186=4,32∙sinб

Расчет коэффициента запаса:

Кз=(Рмах-Ро)/Ро=(4,32-0,278)/0,278=11,94%


Так как коэффициент запаса равен 11,94%, то из этого следует, что система является статически неустойчивой. Устойчивой считается система с КЗ не менее 15 % в нормальном режиме и не менее 5% в послеаварийном.


2.2 Расчет динамической устойчивости


Расчет остаточного напряжения системы:


Uост=Хlr2∙Iкз3=0,173 ∙410,853 =70,935 кВ;

Uост=72,986/6,3=11,258

Расчет активной мощности передаваемой генератором системы:


Pii=E∙Uост∙sinб/Хрез=1,08∙11,258∙sinб/0,186=65,36sinб


Расчет углов бо,бкр:


бо=arcsin(Po/PImax)=arcsin(0,278/65,36)=1,24 ; бкр=180-бо=180-1,4=178,6


Из значений бо и бкр следует, что система также является и динамически неустойчивой.


Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать