Расчеты, связанные с аппаратурой в энергосистеме

,

(3.4.1)

,

(3.4.2)


где X *рез1,2результирующее сопротивление от источника до места к.з. (X *рез1= X *б1; X *рез2= =X *б2);

Sc1,2 – мощность системы, МВА.

Расчёт удалённости точки к.з. для источников, о.е.:


,

.


По удалённости точки к.з. выбираем каким методом необходимо определять величины тока к.з.:

Действующее значение периодической составляющей 3 фазного тока удалённого к.з. с помощью приближённого метода:


.

(3.4.3)


Расчёт периодической составляющей, кА:


.



Номинальный ток источника:


.

(3.4.7)


Расчёт номинального тока источника, кА:


.




Расчёт ведём для выключателя типа: ВГТ-220-40/2500 У1.

Для данного выключателя tСВ=0,035, с.

Время от начала к.з. до расхождения контактов выключателя:


,

(3.4.8)


где tРЗ min – время срабатывания релейной защиты, с, принимаемое tРЗ=0,01 с;

tСВ собственное время отключения выключателя: от момента подачи импульса на электромагнит отключения привода выключателя до момента расхождения контактов, с.

Расчёт времени отключения, с:

.


Определяем n* по типовым кривым при τ=0,045 с. Получаем n*=0,945.

Расчёт действующего значения периодической составляющей 3 фазного тока к.з., кА:

.

Максимальное значение апериодической составляющей 3 фазного тока к.з. в момент расхождения контактов выключателя:


,

(3.4.9)


где Тапостоянная времени затухания апериодической составляющей тока к.з., с, получаемая из табл.7 [6]; для выключателя класса 110 кВ Та=0,03 с.

Расчёт апериодической составляющей 3 фазного тока к.з. для двух источников, кА:


,


.



Ударное значение 3 фазного тока к.з.:


,


(3.4.10)




где kуударный коэффициент, определяемый по табл.3 [4]; для выключателя класса 110 кВ

kу=1,72.

Расчёт ударного 3 фазного тока к.з. для двух источников, кА:


,


.



Полный 3 фазный ток к.з.:


.

(3.4.11)


Расчёт полного 3 фазного тока к.з. для двух источников, кА:


,


.



Находим суммарные составляющие 3 фазного тока к.з., кА:


,

(3.4.12)

,

(3.4.13)

,

(3.4.14)

.

(3.4.15)


Расчёт токов к.з. на шинах 2×25 кВ.

Расчёт удалённости точки к.з. для источников, о.е.:



,


.



Расчёт периодической составляющей 3 фазного тока к.з., кА:


.



Расчёт номинального тока источника, кА:


.



Расчёт ведём для выключателя типа: ВВС-27,5-20/1600 УХЛ1.

Для данного выключателя tСВ=0,06, с.

Расчёт полного времени отключения, с:


.



Определяем n* по типовым кривым при τ=0,07 с. Получаем n*=1,01.

Расчёт действующего значения периодической составляющей 3 фазного тока к.з., кА:


.



Расчёт апериодической составляющей 3 фазного тока к.з. для двух источников (для выключателя класса 27,5 кВ Та=0,04 с), кА:



,


.



Расчёт ударного 3 фазного тока к.з. для двух источников (для выключателя класса 27,5 кВ kу=1,6), кА:


,


.



Расчёт полного 3 фазного тока к.з. для двух источников, кА:


,


.



Расчёт токов к.з. на шинах 10 кВ.

Расчёт удалённости точки к.з. для источников, о.е.:


,


.



Расчёт периодической составляющей 3 фазного тока к.з. для двух источников, кА:


,



.



Расчёт ведём для выключателя типа: ВВ/TEL-10-12,5/1000.

Для данного выключателя tСВ=0,015, с.

Расчёт полного времени отключения, с:

.


Расчёт апериодической составляющей 3 фазного тока к.з. для двух источников (для выключателя класса 10 кВ Та=0,01 с), кА:


,


.



Расчёт ударного 3 фазного тока к.з. для двух источников (для выключателя класса 10 кВ kу=1,72), кА:


,


.



Расчёт полного 3 фазного тока к.з. для двух источников, кА:


,


.




Проверка токоведущих частей, изоляторов и аппаратуры по результатам расчёта токов короткого замыкания


Выбранные по условию нормального режима работы аппараты, необходимо проверить по условиям короткого замыкания, т.е. на электродинамическую и термическую устойчивость.


Расчёт величины теплового импульса для всех РУ


Для удобства проверки выполняют расчёт величины теплового импульса для всех РУ по выражению:


,


(4.1.1)

где Iп – начальное значение периодической составляющей тока к.з., кА;

Та – постоянная времени затухания апериодической составляющей тока к.з., с.

Полное время отключения:


,


(4.1.2)

где tРЗ – время срабатывания релейной защиты рассматриваемой цепи;

– полное время отключения выключения до погасания дуги, с.

РУ-110 кВ:

Марка выбранного выключателя: ВГТ-110-40/2500 У1.

Параметры для расчётов: tРЗ=2 с, tВ=0,055 с, Та=0,03 с.

Полное время отключения, с:

.


Расчёт величины теплового импульса, кА2×с:

.


РУ-2×25 кВ:

Марка выбранного выключателя: ВВС-27,5-20/1600 УХЛ1.

Параметры для расчётов: tРЗ=1 с, tВ=0,08 с, Та=0,04 с.

Полное время отключения, с:

.


Расчёт величины теплового импульса, кА2×с:

.


РУ-10 кВ:

Марка выбранного выключателя: ВВ/ТЕL-10-20/1000.

Параметры для расчётов: tРЗ=1 с, tВ=0,025 с, Та=0,01 с.

Полное время отключения, с:

.


Расчёт величины теплового импульса, кА2×с:

.


Фидера 2×25 кВ:

Марка выбранного выключателя: ВВС-27,5-20/1600 УХЛ1.

Параметры для расчётов: tРЗ=0,5 с, tВ=0,08 с, Та=0,04 с.

Полное время отключения, с:

.


Расчёт величины теплового импульса, кА2×с:

.


Фидера 10 кВ:

Марка выбранного выключателя: ВВ/ТЕL-10-20/1000.

Параметры для расчётов: tРЗ=0,5 с, tВ=0,025 с, Та=0,01 с.

Полное время отключения, с:

.


Расчёт величины теплового импульса, кА2×с:

.


Проверка токоведущих элементов

Проверку токоведущих элементов выполняют:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать