Регуляторы напряжения

Увеличение коэффициента мощности

Увеличение коэффициента мощности может быть достигнуто путем

·                     компенсации реактивной мощности конденсаторами

·                     активной компенсации – использование полупроводников

·                     перевозбуждением синхронных машин (двигатель / генератор)

Типы ККМ (расстроенный или стандартный)

·                     индивидуальная или фиксированная компенсация (каждый источник реактивной мощности компенсируется индивидуально)

·                     групповая компенсация (источники реактивной мощности объединены в группу и компенсируются как одно целое)

·                     центральная или автоматическая компенсация (централизованной системой ККМ)

·                     смешанная компенсация

В системе электроснабжения потери в сетях составляют 8–12% от объема производства. Для уменьшения этих потерь необходимо: правильно определять электрические нагрузки; рационально передавать и распределять электрическую энергию; обеспечивать необходимую степень надежности; обеспечивать необходимое качество электроэнергии; обеспечивать электромагнитную совместимость приемника с сетью; экономить электроэнергию. Мероприятия, могущие обеспечить вышеперечисленные задачи это – создание быстродействующих средств компенсации реактивной мощности, улучшающей качество; сокращение потерь достигается компенсацией реактивной мощности, увеличением загрузки трансформаторов, уменьшением потерь в них, приближением трансформаторов к нагрузкам, использование экономичного оборудования и оптимизация его режимов работы, а также использование автоматических систем управления электроснабжением. Режим работы энергосистемы характеризуется тремя параметрами: напряжением, током и активной мощностью. Вспомогательный параметр – реактивная мощность. Реактивная мощность и энергия ухудшают показатели работы энергосистемы, то есть загрузка реактивными токами генераторов электростанций увеличивает расход топлива; увеличиваются потери в подводящих сетях и приемниках; увеличивается падение напряжения в сетях. Реактивную мощность потребляют такие элементы питающей сети как трансформаторы электростанций; главные понизительные электростанции, линии электропередач – на это приходится 42% реактивной мощности генератора, из них 22% на повышающие трансформаторы; 6,5% на линии электропередач районной системы; 12,5% на понижающие трансформаторы. Основные же потребители реактивной мощности – асинхронные электродвигатели, которые потребляют 40% всей мощности совместно с бытовыми и собственными нуждами; электрические печи 8%; преобразователи 10%; трансформаторы всех ступеней трансформации 35%; линии электропередач 7%. Говоря иначе, существуют приемники электроэнергии, нуждающиеся в реактивной мощности. Одной реактивной мощности, выдаваемой генератором явно недостаточно. Увеличивать реактивную мощность, выдаваемую генератором нецелесообразно из-за вышеперечисленных причин, т.е. нужно выдавать реактивную мощность именно там, где она больше всего нужна.


4–3 Релейная защита и автоматика в системах электроснабжения: назначение, устройство, виды, предъявляемые требования

РЕЛЕЙНАЯ ЗАЩИТА электрических систем – совокупность устройств (или отдельное устройство), содержащая 1 или несколько реле и способная реагировать на нарушения нормального режима работы (напр., при коротком замыкании, перенапряжении) различных элементов электрической системы, автоматически выявлять их и давать команду на отключение поврежденного участка или какие-либо другие переключения в электрической системе.


Измерительная часть включает: измерительные органы и пусковые органы. Непрерывно контролирует состояние защищаемого объекта и определяет условие срабатывания в соответствии со значениями входящих величин. включает: логический орган. Данная часть формирует управляющее воздействие в зависимости от комбинаций и последующих поступлений от сигналов измерительной части

Сигнальный орган формирует сигнал о срабатывании защиты, как в целом, так и отдельных ступеней.

Современные крупные промышленные предприятия представляют собой комплекс ряда технологических, энергетических, транспортных, информационных и других систем с непрерывным режимом работы, характеризуются сложностью структуры и взаимосвязей между ними.

Технически грамотное применение и управление электрооборудованием позволяет максимально реализовать технологические возможности используемого оборудования, повысить его экономическую эффективность и обеспечить безопасность условий труда.

Цифровые устройства релейной защиты благодаря функциям диагностики выявляют повреждения или анормальные режимы работы электротехнического оборудования на ранней стадии его развития. Вместе с тем, в нормальных рабочих условиях, данные получаемые от устройств защиты могут быть использованы для оптимизации работы оборудования и повышения производительности предприятия в целом.

Внедряя современные средства защиты в общую систему автоматизации, управление электротехническим объектами может быть улучшено, а нежелательные внеплановые простои сокращены. Все это приводит к быстрой окупаемости устройств релейной защиты и диагностики, делая их ценным компонентом системы автоматизации предприятия.

Использование современной элементной базы высокой степени интеграции позволит повысить аппаратную надежность самих устройств защиты и диагностики, которая должна быть не ниже, чем надежность защищаемого оборудования.

n     доступа к информации о состоянии и параметрах режима смежных элементов;

n     возможности модернизации системы без изменения элементной базы путем введения новых алгоритмов;

n     использования оборудования программно-, аппаратно- и конструктивно совместимого с локальной вычислительной сетью и другими автоматизированными системами;

n     придания дополнительных свойств информативного характера, заключающихся в возможности индикации текущих значений контролируемых параметров и их фиксации в момент превышения заданных уставок.

Требования, предъявляемые к релейной защите системой управления предприятия

Анализируя роль, которую занимают устройства защиты в системе производства продукции, необходимо рассматривать как процессы управления предприятием, так и требованиями к самому электрооборудованию. Эти требования должны исходить как от разработчиков электротехнического оборудования, релейной защиты, так и от людей занятых в автоматизации процессов производства предприятия.

Повышение требований в отношении надежности определяется поточностью технологического процесса. Выход из строя одного из звеньев технологической цепи приводит к ее остановке, к снижению производительности и качества продукции. Каждая остановка вызывает нарушение технологического процесса. Восстановление нормального режима после пуска во многих случаях требует довольно продолжительного времени. Кроме того, всякие нарушения технологического процесса, вызывающие колебание качества получаемых продуктов, отрицательно сказываются на последующих процессах, в которых они используются.

Эффективность применения систем релейной защиты на предприятии

В современной экономике, предприятия должны производить качественную продукцию на приемлемом уровне затрат. Затраты, таким образом, можно разбить на следующие составляющие:

n     инвестиционные;

n     восстановительные и ремонтные;

n     операционные;

n     потери продукции при простоях;

Существует возможность минимизации перечисленных затрат при верном выборе и применении защитных средств электротехнического оборудования. Четкое управление агрегатом, механизмом совместно с устройством защиты приводит к решению использования менее мощного оборудования без чрезмерного запаса по мощности. Это позволяет снизить инвестиционные затраты, затраты на потребление электроэнергии, поскольку электродвигатель, линии питания и т.д. будут работать с большей эффективностью.

Выработка запланированных объемов, сокращение аварийных простоев технологического оборудования и связанная с ними недодача продукции предприятия находятся в прямой зависимости от правильной и четкой организации ухода, профилактических осмотров и планово-предупредительных ремонтов электрооборудования.

Расширение функциональных возможностей электрооборудования способствует использованию наиболее выгодных технологических режимов, повышает оперативность управления с целью оптимизации процессов.

Различные сбои в работе электрооборудования, завязанного в единые системы управления, ведут к потерям и снижению эффективности работы предприятия. Повышение уровня механизации и автоматизации производства требует повышения безопасности эксплуатации технологического и электрического оборудования. Применение в системах электроснабжения промышленного предприятия новых видов электрооборудования снизит потери электроэнергии в коммуникациях и повысит ее качество [3].

Внедрение на предприятии системы защиты и диагностики электрооборудования позволит эффективней эксплуатировать электрохозяйство, исключать неблагоприятные факторы в работе по электротехнической части и придерживаться вышеуказанных требований.

При внедрении микроконтроллерных устройств защиты и диагностики основного электрооборудования следует подробнее рассмотреть следующие факторы влияющие на эффективность их применения.

Отличительной особенностью защиты и диагностики электрооборудования является ее функционирование в реальном масштабе времени, т.е. в темпе протекания процессов. Влияние системы на эффективность производства проявляется как:

n     экономия потребляемой электроэнергии и сокращение потерь;

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать