Таким образом, кА < кА.
Вывод: Для обеспечения прохождения периодической составляющей тока КЗ в точке КЗ К-2 сечение кабелей W5 и W6 мы вынуждены увеличить до 35 мм2.
2.4 Расчет тока КЗ в точке К-3
Результирующее сопротивление со стороны энергосистемы для точки К-3:
Ом
Начальное значение периодической составляющей тока в месте КЗ:
кА > кА.
Увеличиваем сечение кабеля отходящего от РП: мм2, тогда:
кА.
Заново считаем:
Ом;
Ом,
где – новые удельные сопротивления кабеля ([5], табл. 3.5).
Таким образом кА < кА.
3. Уточненный расчет токов КЗ
Исходная схема распределительной сети представлена на рис. 4.
В дальнейшем на всех схемах замещения, начиная со схемы на рис. 4, в скобках указаны сопротивления элементов схемы в именованных единицах в минимальном режиме для определения минимальных значений токов КЗ, а без скобок - в максимальном режиме.
3.1 Расчет тока КЗ в точке К-1
1) Рассчитаем реактивные сопротивления силового трансформатора ГПП с учётом работы устройства РПН.
Напряжения, соответствующие крайним ответвлениям:
кВ;
кВ,
где: ΔUрпн=10 % – ступень регулирования трансформатора ([13] табл. П1.2).
Сопротивления трансформаторов в максимальном и минимальном режимах:
Ом;
Ом,
где: Uk%T1max=6.9 – максимальное сопротивление короткого замыкания трансформатора ([13] табл. П1.2);
Uk%T1min=6.2 – минимальное сопротивление короткого замыкания трансформатора ([13] табл. П1.2).
Определим наименьшее и наибольшее сопротивления трансформатора, отнесенные к стороне 6.3 кВ:
Ом
Ом
2) Результирующее сопротивление от системы до точки К-1 максимальном и минимальном режимах:
Ом;
Ом.
3) Максимальное и минимальное значения тока при металлическом трёхфазном КЗ в точке К-1:
кА;
кА.
4) Минимальный ток двухфазного КЗ в точке К-1:
кА.
3.2 Расчет тока КЗ в точке К-2
1) Максимальное и минимальное значения тока при металлическом трёхфазном КЗ в точке К-2:
кА;
кА.
2) Минимальный ток двухфазного КЗ в точке К-2:
кА.
3.3 Расчет тока КЗ в точке К-3
1) Результирующее сопротивление от системы до точки К-3 максимальном и минимальном режимах:
|
|
2) Максимальное и минимальное значения тока при металлическом трёхфазном КЗ в точке К-3:
кА;
кА.
3) Минимальный ток двухфазного КЗ в точке К-3:
кА.
3.4 Расчет тока КЗ в точке К-4
1) Результирующее сопротивление от системы до точки К-4 максимальном и минимальном режимах:
2) Максимальное и минимальное значения тока при металлическом трёхфазном КЗ в точке К-4:
кА;
кА.
3.5 Расчет тока КЗ в точке К-5
1) Расчет результирующего сопротивления от системы до точки К-5 в максимальном режиме. Определим полное сопротивление трансформатора Т3, приведенное к стороне ВН:
Ом.
Активное сопротивление трансформатора Т3, приведенное к стороне ВН:
Ом.
Индуктивное сопротивление трансформатора Т3, приведенное к стороне ВН:
Ом.
Результирующее полное сопротивление от системы до точки К-5 в максимальном режиме:
2) Максимальное значение тока при металлическом трёхфазном КЗ в точке К-5 приведенное к стороне ВН (Uвн=6.3 кВ):
кА.
Максимальное значение тока при металлическом трёхфазном КЗ в точке К-5 приведенное к стороне НН (Uнн=0.4 кВ):
кА.
3) Определим суммарное полное сопротивление цепи КЗ, приведенное к стороне НН:
Суммарное активное сопротивление цепи КЗ, приведенное к стороне НН:
мОм,
где: мОм – активное сопротивление от системы до цехового трансформатора отнесенное к стороне НН;
Ом – активное сопротивление от системы до цехового трансформатора отнесенное к стороне ВН;
мОм – активное сопротивление цехового трансформатора, приведенное к стороне НН;
мОм – активное сопротивление шинопровода типа ШРА73 (250 А) от трансформатора до секции шин 0.4 кВ, протяженностью 10 м ([12] табл. П2.3);
гкв=0.65 мОм – активное сопротивление токовых катушек и контактов автоматического выключателя QF3 с номинальным током 400 А (рис. 1) ([12] табл. 2.4);
rк=1 мОм – активное сопротивление контактов коммутационных аппаратов цепи КЗ;
rп=15 мОм – активное переходное сопротивление дуги в разделке кабеля, отходящего от секции шин 0.4 кВ ([12] табл. П2.2).
Суммарное индуктивное сопротивление цепи КЗ, приведенное к стороне НН:
мОм,
где: мОм – индуктивное сопротивление от системы до цехового трансформатора в минимальном режиме приведенное к стороне НН;
мОм – индуктивное сопротивление от системы до цехового трансформатора в минимальном режиме приведенное к стороне ВН;
мОм – индуктивное сопротивление цехового трансформатора, приведенное к стороне НН;
мОм – индуктивное сопротивление шинопровода типа ШРА73 (250 А) от трансформатора до секции шин 0.4 кВ, протяженностью 10 м ([12] табл. П2.3);
xкв=0.17 мОм – индуктивное сопротивление токовых катушек и контактов автоматического выключателя QF3 с номинальным током 400 А (рис. 1) ([12] табл. 2.4).
4) Минимальное значение тока трехфазного КЗ вблизи секции шин 0.4 кВ с учетом активного сопротивления дуги:
кА.
Минимальное значение тока трехфазного КЗ в точке К-5, отнесенное к стороне ВН:
кА.
3.6 Расчет тока КЗ в точке К-6
1) Расчет результирующего сопротивления от системы до точки К-6 в максимальном режиме. Определим полное сопротивление трансформатора Т5, приведенное к стороне ВН:
Ом.
Активное сопротивление трансформатора Т5, приведенное к стороне ВН:
Ом.
Индуктивное сопротивление трансформатора Т5, приведенное к стороне ВН:
Ом.
Результирующее полное сопротивление от системы до точки К-6 в максимальном режиме:
2) Максимальное значение тока при металлическом трёхфазном КЗ в точке К-6 приведенное к стороне ВН (Uвн=6.3 кВ):
кА.
Максимальное значение тока при металлическом трёхфазном КЗ в точке К-6 приведенное к стороне НН (Uнн=0.4 кВ):
кА.
3) Определим суммарное полное сопротивление цепи КЗ, приведенное к стороне НН:
Суммарное активное сопротивление цепи КЗ, приведенное к стороне НН:
мОм,
где: мОм – активное сопротивление от системы до цехового трансформатора отнесенное к стороне НН;
Ом – активное сопротивление от системы до цехового трансформатора отнесенное к стороне ВН;
мОм – активное сопротивление цехового трансформатора, приведенное к стороне НН;
мОм – активное сопротивление шинопровода типа ШРА73 (250 А) от трансформатора до секции шин 0.4 кВ, протяженностью 10 м ([12] табл. П2.3);
rкв=0.65 мОм – активное сопротивление токовых катушек и контактов автоматического выключателя QF3 с номинальным током 400 А (рис. 1) ([12] табл. 2.4);
rк=1 мОм – активное сопротивление контактов коммутационных аппаратов цепи КЗ;
rп=15 мОм – активное переходное сопротивление дуги в разделке кабеля, отходящего от секции шин 0.4 кВ ([12] табл. П2.2).
Суммарное индуктивное сопротивление цепи КЗ, приведенное к стороне НН:
мОм,
где: мОм – индуктивное сопротивление от системы до цехового трансформатора в минимальном режиме приведенное к стороне НН;
Ом – индуктивное сопротивление от системы до цехового трансформатора в минимальном режиме приведенное к стороне ВН;
мОм – индуктивное сопротивление цехового трансформатора, приведенное к стороне НН;
мОм – индуктивное сопротивление шинопровода типа ШРА73 (250 А) от трансформатора до секции шин 0.4 кВ, протяженностью 10 м ([12] табл. П2.3);
xкв=0.17 мОм – индуктивное сопротивление токовых катушек и контактов автоматического выключателя QF3 с номинальным током 400 А (рис. 1) ([12] табл. 2.4).
4) Минимальное значение тока трехфазного КЗ вблизи секции шин 0.4 кВ с учетом активного сопротивления дуги:
кА.
Минимальное значение тока трехфазного КЗ в точке К-5, отнесенное к стороне ВН:
Таблица 2.1.
Ток КЗ |
К-1 |
К-2 |
К-3 |
К-4 |
К-5 |
К-6 |
, кА |
17.877 |
13.248 |
9.931 |
7.766 |
0.260 |
0.259 |
, кА |
17.135 |
12.877 |
9.764 |
7.683 |
0.219 |
0.197 |
, кА |
14.839 |
11.152 |
8.456 |
6.653 |
— |
— |
4. Приближенное определение токов самозапуска промышленной нагрузки
4.1 Расчет тока самозапуска отходящей от РП линии W5
Сопротивление обобщенной нагрузки, отнесенное к номинальной мощности трансформатора и среднему значению междуфазного напряжения стороны ВН:
Ом,
где: x*н=0.35 – сопротивление обобщенной нагрузки [12].
В соответствии со схемой замещения (рис. 4), эквивалентное сопротивление при самозапуске равно:
Ток самозапуска:
А.
Коэффициент самозапуска:
,
где: А – номинальный ток трансформатора Т3.
4.2 Расчет тока самозапуска линии W6'
Сопротивление обобщенной нагрузки, отнесенное к номинальной мощности трансформатора и среднему значению междуфазного напряжения стороны ВН: